Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmo...Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.展开更多
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi...In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.展开更多
By using variational method of Pekar type, we have studied the energy levels of strong coupling magnetopolaron in disk shape quantum dot(QD) and quantum well(QW). Our results show that, with the increasing magnetic f...By using variational method of Pekar type, we have studied the energy levels of strong coupling magnetopolaron in disk shape quantum dot(QD) and quantum well(QW). Our results show that, with the increasing magnetic field and confinement strength, the magnetopolaron binding energy of QD and QW in the ground state and in the excited state is enhanced. The limiting results of bulk type and strict two dimensional type are obtained.展开更多
By using the variational method of Pekar type, the ground state and the first excited state of the strong coupling magnetopolaron in cylinder shape quantum dot are considered. The results show that, with the increasi...By using the variational method of Pekar type, the ground state and the first excited state of the strong coupling magnetopolaron in cylinder shape quantum dot are considered. The results show that, with the increasing cyclotron frequency and the confinement strength, the magnetopolaron binding energies in both the ground state and the excited state, and the resonance frequency of magnetopolaron are enhanced. The limiting case of the bulk and strict one dimensional type is also discussed.展开更多
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-s...Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
We propose a terahertz hybrid metamaterial composed of subwavelength metallic slits and graphene plasmonic ribbons for sensing application.This special design can cause the interaction between the plasmon resonances o...We propose a terahertz hybrid metamaterial composed of subwavelength metallic slits and graphene plasmonic ribbons for sensing application.This special design can cause the interaction between the plasmon resonances of the metallic slits and graphene ribbons,giving rise to a strong coupling effect and Rabi splitting.Intricate balancing in the strong coupling region can be perturbed by the carrier concentration of graphene,which is subject to the analyte on its surface.Thereby,the detection of analyte can be reflected as a frequency shift of resonance in terahertz transmission spectra.The result shows that this sensor can achieve a theoretical detection limit of 325 electrons or holes per square micrometer.Meanwhile,it also works well as a refractive index sensor with the frequency sensitivity of 485 GHz/RIU.Our results may contribute to design of ultra-micro terahertz sensors.展开更多
The circular dichroism(CD) signal of a molecule is usually weak,however,a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing,chiral photo detection,and chiral cat...The circular dichroism(CD) signal of a molecule is usually weak,however,a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing,chiral photo detection,and chiral catalysis.In this work,we show that a strong chiral response can be obtained in a hybridized system consisting of an artificial chiral molecule and a nanorod in the strong coupling regime.The artificial chiral molecule is composed of six quantum dots in a helix assembly,and its CD signal arises from internal Coulomb interactions between quantum dots.The CD signal of the hybridized system is highly dependent on the Coulomb interactions and the strong coupling progress through the electromagnetic interactions.We use the coupled oscillator model to analyze strong coupling phenomenon and address that the strong coupling progress can amplify the CD signal.This work provides a scenario for designing new plasmonic nanostructures with a strong chiral optical response.展开更多
In this paper, we present a simple theoretical approach to calculate the multiple ionization of big atoms and molecules induced by very high-q fast projectiles in a strong coupling regime (q/v 〉 1). The results obt...In this paper, we present a simple theoretical approach to calculate the multiple ionization of big atoms and molecules induced by very high-q fast projectiles in a strong coupling regime (q/v 〉 1). The results obtained from this approach are in excellent agreement with the available experimental data. A probable scenario of molecular multiple ionization by fast and very high-q projectiles is discussed. The very small computational time required here and the good agreement with the existing experimental data make it a good candidate for studying the multiple ionization of complex molecules under high linear energy transfers.展开更多
We theoretically investigate the strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media by using classical methods. Fresnel equations are employed to solve our propos...We theoretically investigate the strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media by using classical methods. Fresnel equations are employed to solve our proposed structure. The results show that both the reflection and transmission spectra show a Rabi splitting-like line shape, revealing the strong coupling phenomenon. Furthermore, the radiative angle versus incident wavelength exhibits a Fano line shape. The strong coupling phenomenon can be well tuned by controlling the surface plasmon excitation, such as the incident angle and the thickness of the silver films. Our structure has potential applications in quantum networks, optical switches, and so on.展开更多
Fluctuation theorems have been applied successfully to any system away from thermal equilibrium,which are helpful for understanding the thermodynamic state evolution.We investigate fluctuation theorems for strong coup...Fluctuation theorems have been applied successfully to any system away from thermal equilibrium,which are helpful for understanding the thermodynamic state evolution.We investigate fluctuation theorems for strong coupling between a system and its reservoir,by path-dependent definition of work and heat satisfying the first law of thermodynamics.We present the fluctuation theorems for two kinds of entropy productions.One is the informational entropy production,which is always non-negative and can be employed in either strong or weak coupling systems.The other is the thermodynamic entropy production,which differs from the informational entropy production at strong coupling by the effects regarding the reservoir.We find that,it is the negative work on the reservoir,rather than the nonequilibrium of the thermal reservoir,which invalidates the thermodynamic entropy production at strong coupling.Our results indicate that the effects from the reservoir are essential to understanding thermodynamic processes at strong coupling.展开更多
Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum g...Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum galactic rotation velocity by the simple relation , where is the velocity, at which the difference between galactic rotation velocity and Thomas precession is equal, and α is Sommerfeld’s constant. The result is in excellent agreement with the value of α<sub>s</sub> = 0.1170 ± 0.0019, recently measured and verified via QCE analysis by CERN researchers. One can formulate a reciprocity relation, connecting α<sub>s</sub> with the circle constant: . It is the merit of Preston Guynn to derive the Milky Way maximum value of the galactic rotation velocity β<sub>g</sub>, pointing to its “extremely important role in all physics”. The mass (energy) constituents of the Universe follow a golden mean hierarchy and can simply be related to the maximum of Guynn’s difference velocity respectively to α<sub>s</sub>(m<sub>z</sub>), therewith excellently confirming Bouchet’s WMAP data analysis. We conclude once more that the golden mean concept is the leading one of nature.展开更多
A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the ...A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.展开更多
This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite meta...This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.展开更多
Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rig...Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes.It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects.The effects of graphene chemical potential are discussed.It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons,surface phonon polaritons,hyperbolic phonon polaritons,and magnetic polaritons caused by the graphene strong coupling effects.Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects.Finally,the effects of cell grating filling ratio are investigated.The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio.This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system.展开更多
Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene....Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene.The band structure shows that BeC_(2)is metallic,thus,the possible phonon-mediated superconductivity is explored based on the Eliashberg equation.The calculated electron-phonon coupling(EPC)constantλis up to 4.07,and the corresponding superconducting critical temperature(Tc)is 72.1 K,approaching the liquid nitrogen temperature.The reason for the high Tc is the strong EPC.And it is proved to be an anisotropic single-gap superconductor by analyzing the superconducting gap?kof BeC_(2).The electronic susceptibility calculation shows strong nesting effect in BeC_(2).Since rare 2D superconductors show such a strong EPC constantλwhich originates from the coupling between electrons in C-pzorbital and in-plane vibrations of Be and C atoms,the predicted BeC_(2)provides a new platform for investigating strong EPC 2D superconductor.展开更多
A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the solito...A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.展开更多
Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and k...Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.展开更多
In this paper, the two-species prey-predator Lotka-Volterra model with the Holling's type III is discussed. By the method of coupled upper and lower solutions and its associated monotone iterations, the existence of ...In this paper, the two-species prey-predator Lotka-Volterra model with the Holling's type III is discussed. By the method of coupled upper and lower solutions and its associated monotone iterations, the existence of solutions for a strongly coupled elliptic system with homogeneous of Dirchlet boundary conditions is derived. These results show that this model admits at least one coexistence state if across-diffusions are weak.展开更多
This article is concerned with a strongly coupled elliptic system modeling the steady state of two or more populations that compete in some regions. We prove the uniqueness of the limiting configuration as the competi...This article is concerned with a strongly coupled elliptic system modeling the steady state of two or more populations that compete in some regions. We prove the uniqueness of the limiting configuration as the competing rate tends to infinity, under suitable conditions. The proof relies on properties of limiting solution and Maximum principle.展开更多
基金supported by the Australian Research Council (DP200101353)。
文摘Strong coupling between resonantly matched surface plasmons of metals and excitons of quantum emitters results in the formation of new plasmon-exciton hybridized energy states.In plasmon-exciton strong coupling,plasmonic nanocavities play a significant role due to their ability to confine light in an ultrasmall volume.Additionally,two-dimensional transition metal dichalcogenides(TMDCs) have a significant exciton binding energy and remain stable at ambient conditions,making them an excellent alternative for investigating light-matter interactions.As a result,strong plasmon-exciton coupling has been reported by introducing a single metallic cavity.However,single nanoparticles have lower spatial confinement of electromagnetic fields and limited tunability to match the excitonic resonance.Here,we introduce the concept of catenary-shaped optical fields induced by plasmonic metamaterial cavities to scale the strength of plasmon-exciton coupling.The demonstrated plasmon modes of metallic metamaterial cavities offer high confinement and tunability and can match with the excitons of TMDCs to exhibit a strong coupling regime by tuning either the size of the cavity gap or thickness.The calculated Rabi splitting of Au-MoSe_2 and Au-WSe_2 heterostructures strongly depends on the catenary-like field enhancement induced by the Au cavity,resulting in room-temperature Rabi splitting ranging between 77.86 and 320 me V.These plasmonic metamaterial cavities can pave the way for manipulating excitons in TMDCs and operating active nanophotonic devices at ambient temperature.
基金the Japan Society for the Promotion of Science,KAKENHI Grant Nos.20H04199 and 23H00475.
文摘In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm.
文摘By using variational method of Pekar type, we have studied the energy levels of strong coupling magnetopolaron in disk shape quantum dot(QD) and quantum well(QW). Our results show that, with the increasing magnetic field and confinement strength, the magnetopolaron binding energy of QD and QW in the ground state and in the excited state is enhanced. The limiting results of bulk type and strict two dimensional type are obtained.
文摘By using the variational method of Pekar type, the ground state and the first excited state of the strong coupling magnetopolaron in cylinder shape quantum dot are considered. The results show that, with the increasing cyclotron frequency and the confinement strength, the magnetopolaron binding energies in both the ground state and the excited state, and the resonance frequency of magnetopolaron are enhanced. The limiting case of the bulk and strict one dimensional type is also discussed.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921401)the Tsinghua University Initiative Scientific Research Programthe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation
文摘Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential ap- plications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including non- classical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quan- tum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms, theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61865009,61927813,and 62005168).
文摘We propose a terahertz hybrid metamaterial composed of subwavelength metallic slits and graphene plasmonic ribbons for sensing application.This special design can cause the interaction between the plasmon resonances of the metallic slits and graphene ribbons,giving rise to a strong coupling effect and Rabi splitting.Intricate balancing in the strong coupling region can be perturbed by the carrier concentration of graphene,which is subject to the analyte on its surface.Thereby,the detection of analyte can be reflected as a frequency shift of resonance in terahertz transmission spectra.The result shows that this sensor can achieve a theoretical detection limit of 325 electrons or holes per square micrometer.Meanwhile,it also works well as a refractive index sensor with the frequency sensitivity of 485 GHz/RIU.Our results may contribute to design of ultra-micro terahertz sensors.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0301300)the Fundamental Research Funds for the Central Universities,China(Grant No.2019XD-A09)the National Natural Science Foundation of China(Grant No.11574035)。
文摘The circular dichroism(CD) signal of a molecule is usually weak,however,a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing,chiral photo detection,and chiral catalysis.In this work,we show that a strong chiral response can be obtained in a hybridized system consisting of an artificial chiral molecule and a nanorod in the strong coupling regime.The artificial chiral molecule is composed of six quantum dots in a helix assembly,and its CD signal arises from internal Coulomb interactions between quantum dots.The CD signal of the hybridized system is highly dependent on the Coulomb interactions and the strong coupling progress through the electromagnetic interactions.We use the coupled oscillator model to analyze strong coupling phenomenon and address that the strong coupling progress can amplify the CD signal.This work provides a scenario for designing new plasmonic nanostructures with a strong chiral optical response.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174116 and 11175075)
文摘In this paper, we present a simple theoretical approach to calculate the multiple ionization of big atoms and molecules induced by very high-q fast projectiles in a strong coupling regime (q/v 〉 1). The results obtained from this approach are in excellent agreement with the available experimental data. A probable scenario of molecular multiple ionization by fast and very high-q projectiles is discussed. The very small computational time required here and the good agreement with the existing experimental data make it a good candidate for studying the multiple ionization of complex molecules under high linear energy transfers.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0301300)the Fundamental Research Funds for the Central Universities,China
文摘We theoretically investigate the strong coupling in silver-molecular J-aggregates-silver structure sandwiched between two dielectric media by using classical methods. Fresnel equations are employed to solve our proposed structure. The results show that both the reflection and transmission spectra show a Rabi splitting-like line shape, revealing the strong coupling phenomenon. Furthermore, the radiative angle versus incident wavelength exhibits a Fano line shape. The strong coupling phenomenon can be well tuned by controlling the surface plasmon excitation, such as the incident angle and the thickness of the silver films. Our structure has potential applications in quantum networks, optical switches, and so on.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674360,11734018,11835011,and 11965012)the Applied Basic Research Project of Yunnan Province,China(Grant No.2017FB004)
文摘Fluctuation theorems have been applied successfully to any system away from thermal equilibrium,which are helpful for understanding the thermodynamic state evolution.We investigate fluctuation theorems for strong coupling between a system and its reservoir,by path-dependent definition of work and heat satisfying the first law of thermodynamics.We present the fluctuation theorems for two kinds of entropy productions.One is the informational entropy production,which is always non-negative and can be employed in either strong or weak coupling systems.The other is the thermodynamic entropy production,which differs from the informational entropy production at strong coupling by the effects regarding the reservoir.We find that,it is the negative work on the reservoir,rather than the nonequilibrium of the thermal reservoir,which invalidates the thermodynamic entropy production at strong coupling.Our results indicate that the effects from the reservoir are essential to understanding thermodynamic processes at strong coupling.
文摘Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum galactic rotation velocity by the simple relation , where is the velocity, at which the difference between galactic rotation velocity and Thomas precession is equal, and α is Sommerfeld’s constant. The result is in excellent agreement with the value of α<sub>s</sub> = 0.1170 ± 0.0019, recently measured and verified via QCE analysis by CERN researchers. One can formulate a reciprocity relation, connecting α<sub>s</sub> with the circle constant: . It is the merit of Preston Guynn to derive the Milky Way maximum value of the galactic rotation velocity β<sub>g</sub>, pointing to its “extremely important role in all physics”. The mass (energy) constituents of the Universe follow a golden mean hierarchy and can simply be related to the maximum of Guynn’s difference velocity respectively to α<sub>s</sub>(m<sub>z</sub>), therewith excellently confirming Bouchet’s WMAP data analysis. We conclude once more that the golden mean concept is the leading one of nature.
文摘A new type strongly gain coupled (GC) DFB laser and a new type self alignment spot size converter (SA SSC) are proposed and successfully fabricated.The strongly GC DFB laser is monolithically integrated with the SA SSC with three step epitaxies.A high single mode yield and large side mode suppression ratio is obtained from the strongly GC DFB laser.A near circle far field pattern is obtained by using the SA SSC.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1400700)the National Natural Science Foundation of China(Grant Nos.12075205,62375123,and 12022403)。
文摘This work provides a theoretical investigation into the strong coupling between a single quantum emitter(QE)and the surface plasmons of sodium metals in two representative plasmonic systems,i.e.,the semi-infinite metal-dielectric interface and the metal nanoparticles(NPs)of monomer/dimer configuration.In both configurations,sodium metals exhibit distinctly stronger coupling strength and lower optical loss in the optical region than their noble metal counterparts,demonstrating the ideal candidate characteristics for single-molecule-level strong couplings with distinctly facile operation conditions.Our results provide new insights into extreme light-matter interactions with potential applications in quantum information,optical sensors,quantum chemistry,etc.
基金supported by the National Natural Science Foundation of China(Grant No.52276075)sponsored by the Natural Science Foundation of Shanghai(Grant No.21ZR1433500)。
文摘Near-field thermophotovoltaic(NTPV)devices comprising a SiC-hBN-graphene emitter and a graphene-InSb cell with gratings are designed to enhance the performance of the NTPV systems.Fluctuational electrodynamics and rigorous coupled-wave analysis are employed to calculate radiative heat transfer fluxes.It is found that the NTPV systems with two graphene ribbons perform better due to the graphene strong coupling effects.The effects of graphene chemical potential are discussed.It is demonstrated that near-field radiative heat transfer of thermophotovoltaic devices is enhanced by the coupling of surface plasmon polaritons,surface phonon polaritons,hyperbolic phonon polaritons,and magnetic polaritons caused by the graphene strong coupling effects.Rabi splitting frequency of different polaritons is calculated to quantify the mutual interaction of graphene strong coupling effects.Finally,the effects of cell grating filling ratio are investigated.The excitation of magnetic polaritons is affected by the graphene ribbon and the cell filling ratio.This investigation provides a new explanation of the enhancement mechanism of graphene-assisted thermophotovoltaic systems and a novel approach for improving the output power of the near-field thermophotovoltaic system.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074213,11574108,12074381,and 12104458)the Major Basic Program of Natural Science Foundation of Shandong Province(Grant No.ZR2021ZD01)the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘Using first-principles calculations,we predict a new type of two-dimensional(2D)beryllium(Be)-decorated T-graphene named BeC_(2),where Be atoms are inserted into C–C bonds linking the carbon tetrarings of T-graphene.The band structure shows that BeC_(2)is metallic,thus,the possible phonon-mediated superconductivity is explored based on the Eliashberg equation.The calculated electron-phonon coupling(EPC)constantλis up to 4.07,and the corresponding superconducting critical temperature(Tc)is 72.1 K,approaching the liquid nitrogen temperature.The reason for the high Tc is the strong EPC.And it is proved to be an anisotropic single-gap superconductor by analyzing the superconducting gap?kof BeC_(2).The electronic susceptibility calculation shows strong nesting effect in BeC_(2).Since rare 2D superconductors show such a strong EPC constantλwhich originates from the coupling between electrons in C-pzorbital and in-plane vibrations of Be and C atoms,the predicted BeC_(2)provides a new platform for investigating strong EPC 2D superconductor.
基金Project supported by the National Natural Science Foundation of China(Grant No.11161017)the National Science Foundation of Hainan Province,China(Grant No.113001)
文摘A high order energy preserving scheme for a strongly coupled nonlinear Schrōdinger system is roposed by using the average vector field method. The high order energy preserving scheme is applied to simulate the soliton evolution of the strongly coupled Schrōdinger system. Numerical results show that the high order energy preserving scheme can well simulate the soliton evolution, moreover, it preserves the discrete energy of the strongly coupled nonlinear Schrōdinger system exactly.
文摘Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic(DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.
基金Supported by the National Natural Science Foundation of China(1057601310871075)
文摘In this paper, the two-species prey-predator Lotka-Volterra model with the Holling's type III is discussed. By the method of coupled upper and lower solutions and its associated monotone iterations, the existence of solutions for a strongly coupled elliptic system with homogeneous of Dirchlet boundary conditions is derived. These results show that this model admits at least one coexistence state if across-diffusions are weak.
文摘This article is concerned with a strongly coupled elliptic system modeling the steady state of two or more populations that compete in some regions. We prove the uniqueness of the limiting configuration as the competing rate tends to infinity, under suitable conditions. The proof relies on properties of limiting solution and Maximum principle.