The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S...Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ...It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.展开更多
This paper first introduced current situations of agricultural enterprises using B2C e-commerce to sell agricultural products.Then,using SWOT method,it analyzed strengths,weaknesses,opportunities,and threats of Wuding...This paper first introduced current situations of agricultural enterprises using B2C e-commerce to sell agricultural products.Then,using SWOT method,it analyzed strengths,weaknesses,opportunities,and threats of Wuding strong chicken farming enterprises implementing B2C e-commerce.Finally,it came up with recommendations for Wuding strong chicken farming enterprises implementing B2C e-commerce.展开更多
This paper investigates Buck's question about which class of spaces is strongly monotonically T2,and if other properties are combined with strongly monotonically T2,which class of spaces could be got. Based on having...This paper investigates Buck's question about which class of spaces is strongly monotonically T2,and if other properties are combined with strongly monotonically T2,which class of spaces could be got. Based on having a cushioned pair-base space and compact strongly monotonically T2 space,some results (Theorems 1--3) are obtained.展开更多
In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient condit...In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient conditions of strong law of large numbers for the difference of random variables which independent and identically distributed conditions are regarded. In this study, we consider the limit as which is stronger than the limit as m× n→?∞ when m, n →?∞?are natural numbers.展开更多
The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kineti...The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.展开更多
This work presents a theoretical simulation of the infrared spectra of strong hydrogen bond in alpha-phase 2-pyridone dimers, as well as in their deuterium derivatives at room temperature. The theory takes into accoun...This work presents a theoretical simulation of the infrared spectra of strong hydrogen bond in alpha-phase 2-pyridone dimers, as well as in their deuterium derivatives at room temperature. The theory takes into account an adiabatic anharmonic coupling between the high-frequency N-H(D) stretching and the low-frequency intermolecular N...O stretching modes by considering that the effective angular frequency of the fast mode N-H(D) is assumed to be strongly dependent on the slow mode stretching coordinate N...O, the intrinsic anharmonicity of the low-frequency N...O mode through a Morse potential, Davydov coupling triggered by resonance exchange between the excited states of the fast modes of the two hydrogen bonds involved in the cyclic dimer, multiple Fermi resonances between the N-H(D) stretching and the overtone of the N-H(D) bending vibrations and the direct and indirect damping of the fast stretching modes of the hydrogen bonds and of the bending modes. The IR spectral density is computed within the linear response theory by Fourier transform of the autocorrelation function of the transition dipole moment operator of the N-H(D) bond. The theoretical line shapes of the υN-H(D) band of alpha-phase 2-pyridone dimers are compared to the experimental ones. The effect of deuteration is successfully reproduced.展开更多
All-solid-state strong coupling systems with large vacuum Rabi splitting energy have great potential applications in future quantum information technologies, such as quantum manipulations, quantum information storage ...All-solid-state strong coupling systems with large vacuum Rabi splitting energy have great potential applications in future quantum information technologies, such as quantum manipulations, quantum information storage and processing,and ultrafast optical switches. Monolayer transition metal dichalcogenides(TMDs) have recently been explored as excellent candidates for the observation of solid-state strong coupling phenomena. In this work, from both experimental and theoretical aspects, we explored the strong coupling effect by integrating an individual plasmonic gold nanorod into the monolayer tungsten diselenide(WSe2). Evident anti-crossing behavior was observed from the coupled energy diagram at room temperature; a Rabi splitting energy of 98 meV was extracted.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金financially supported by the National Natural Science Foundation of China (No.52106259)the Fundamental Research Funds for the Central Universities (2024MS013)Key Research and Development Program of Shaanxi (Program No.2022LL-JB-08)。
文摘Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)
文摘It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.
文摘This paper first introduced current situations of agricultural enterprises using B2C e-commerce to sell agricultural products.Then,using SWOT method,it analyzed strengths,weaknesses,opportunities,and threats of Wuding strong chicken farming enterprises implementing B2C e-commerce.Finally,it came up with recommendations for Wuding strong chicken farming enterprises implementing B2C e-commerce.
文摘This paper investigates Buck's question about which class of spaces is strongly monotonically T2,and if other properties are combined with strongly monotonically T2,which class of spaces could be got. Based on having a cushioned pair-base space and compact strongly monotonically T2 space,some results (Theorems 1--3) are obtained.
文摘In this paper, we obtain the strong law of large numbers for a 2-dimensional array of pairwise negatively dependent random variables which are not required to be identically distributed. We found the sufficient conditions of strong law of large numbers for the difference of random variables which independent and identically distributed conditions are regarded. In this study, we consider the limit as which is stronger than the limit as m× n→?∞ when m, n →?∞?are natural numbers.
基金Supported by a grant from Tianji Coal Chemical Group Co.Ltd.(Project no.2012-1978)Shenzhen Batian Ecological Engineering Co.,Ltd.(Project no.2013-0909).
文摘The separation of Ca2+and Mg2+ions from phosphoric acid-nitric acid aqueous solution is very significant for the neutralization process of nitrophosphate fertilizer.This paper studied the adsorption equilibrium,kinetics,and dynamic separation of Ca2+and Mg2+ions by strong acid cation resin,and the effects of phosphoric acid and nitric acid on the adsorption process were investigated.The results reveal that the adsorption process of Ca2+and Mg2+ions in pure water on resin is in good agreement with the Langmuir isotherm model and their maximal adsorption capacities are 1.86 mmol·g-1 and 1.83 mmol·g-1,respectively.The adsorption kinetics of Ca2+and Mg2+ions on resin fits better with the pseudo-first-order model,and the adsorption equilibrium in pure water is reached within 10 min contact time,while at the present of phosphoric acid,the adsorption rate of Ca2+and Mg2+ions on resin will go down.The dynamic separation experiments demonstrate that the designed column adsorption is able to undertake the separation of metal ions from the mix acids aqueous solution,but the dynamic operation should control the flow rate of mix acid solution.Besides nitric acid solution was proved to be effective to completely regenerate the spent resin and achieve the recyclable operation of separation process.
文摘This work presents a theoretical simulation of the infrared spectra of strong hydrogen bond in alpha-phase 2-pyridone dimers, as well as in their deuterium derivatives at room temperature. The theory takes into account an adiabatic anharmonic coupling between the high-frequency N-H(D) stretching and the low-frequency intermolecular N...O stretching modes by considering that the effective angular frequency of the fast mode N-H(D) is assumed to be strongly dependent on the slow mode stretching coordinate N...O, the intrinsic anharmonicity of the low-frequency N...O mode through a Morse potential, Davydov coupling triggered by resonance exchange between the excited states of the fast modes of the two hydrogen bonds involved in the cyclic dimer, multiple Fermi resonances between the N-H(D) stretching and the overtone of the N-H(D) bending vibrations and the direct and indirect damping of the fast stretching modes of the hydrogen bonds and of the bending modes. The IR spectral density is computed within the linear response theory by Fourier transform of the autocorrelation function of the transition dipole moment operator of the N-H(D) bond. The theoretical line shapes of the υN-H(D) band of alpha-phase 2-pyridone dimers are compared to the experimental ones. The effect of deuteration is successfully reproduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51290271 and 11474364)the National Basic Research Program of China(Grant Nos.2013CB933601 and 2013YQ12034506)+2 种基金the Natural Science Funds for Distinguished Young Scholars of Guangdong Province,China(Grant No.2014A030306017)the Pearl River S&T Nova Program of Guangzhou,China(Grant No.201610010084)the Guangdong Special Support Program,China
文摘All-solid-state strong coupling systems with large vacuum Rabi splitting energy have great potential applications in future quantum information technologies, such as quantum manipulations, quantum information storage and processing,and ultrafast optical switches. Monolayer transition metal dichalcogenides(TMDs) have recently been explored as excellent candidates for the observation of solid-state strong coupling phenomena. In this work, from both experimental and theoretical aspects, we explored the strong coupling effect by integrating an individual plasmonic gold nanorod into the monolayer tungsten diselenide(WSe2). Evident anti-crossing behavior was observed from the coupled energy diagram at room temperature; a Rabi splitting energy of 98 meV was extracted.