In this paper, a quantitative research on the relationship between different underlying surface and sand-dust storm has been made by using 40 years meteorological data of five different types of underlying surface in ...In this paper, a quantitative research on the relationship between different underlying surface and sand-dust storm has been made by using 40 years meteorological data of five different types of underlying surface in northern China, which include farmland, grassland, sandland, gobi and salt crust. These metrological data comprise sand-dust storm days and strong wind days. By analyzing, we can find that there are certain correlations between the days of sand-dust storm and strong wind for different underlying surface, which has great influence on sand-dust storm. But there are pronounced differences in different types of underlying surface. The sand-dust storm days of grassland, gobi and salt crust, with smaller interannual variation are obviously less than strong wind days. On the other hand, the sand-dust storm days of farmland and sandland increase evidently, even in many years, are much more than strong wind days. The differences are mainly induced by the influencing mechanism of different underlying surface on sand-dust storm. Grassland, gobi and salt crust with stable underlying surface are not prone to sand-dust storm under strong wind condition. Whereas, the underlying surface of farmland and sandland is unstable, that is easy to induce sand-dust storm under strong wind condition.展开更多
Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteor...Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteorological observation, as well as radar observation data. For the environment parameter analysis, small CAPE value tended to underestimate storm intensity on potential forecast stage, strong vertical wind shear revealed the strong dry cold air was the important intensity factors of the storm. The water vapor cloud map can be used to monitor the most important features, the dry zone, the wet zone and the boundary between them. When dry intrusion is found, it can be used as one of the bases for the development of heavy rain. Dry cold air intrusion on high-level was traced by water vapor images. And in this process, the analyses revealed the role of dry cold air’s influence on intensity of the storm.展开更多
In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reacti...In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.展开更多
To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the ra...To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (dis- tance of approximately 70-800 kin), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands de- veloped into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.展开更多
National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, Chi...National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.展开更多
Ⅰ. INTRODUCTION In the past years, the attention of many meteorologists has been attracted to the Presidents’ Day snow storm, February 18—19, 1979, not only because of its rareness but also the failure of the opera...Ⅰ. INTRODUCTION In the past years, the attention of many meteorologists has been attracted to the Presidents’ Day snow storm, February 18—19, 1979, not only because of its rareness but also the failure of the operational model (LFM-Ⅱ) of NMC. On February 18—19, 1979, an intensive cyclone developed along the middle Atlantic coast brought about heavy snowfall (45—60 cm) over the middle Atlantic states, from Virginia to southern New Jersey. Regional snowfall rates of 25 mm per hour were common,and local intensities of 100 mm per hour were observed in Washington, D. C. area,展开更多
文摘In this paper, a quantitative research on the relationship between different underlying surface and sand-dust storm has been made by using 40 years meteorological data of five different types of underlying surface in northern China, which include farmland, grassland, sandland, gobi and salt crust. These metrological data comprise sand-dust storm days and strong wind days. By analyzing, we can find that there are certain correlations between the days of sand-dust storm and strong wind for different underlying surface, which has great influence on sand-dust storm. But there are pronounced differences in different types of underlying surface. The sand-dust storm days of grassland, gobi and salt crust, with smaller interannual variation are obviously less than strong wind days. On the other hand, the sand-dust storm days of farmland and sandland increase evidently, even in many years, are much more than strong wind days. The differences are mainly induced by the influencing mechanism of different underlying surface on sand-dust storm. Grassland, gobi and salt crust with stable underlying surface are not prone to sand-dust storm under strong wind condition. Whereas, the underlying surface of farmland and sandland is unstable, that is easy to induce sand-dust storm under strong wind condition.
文摘Taking a typical strong storm in Guizhou on April 5, 2017 for example, the diagnosis analysis used the water vapor cloud and the initial field of EC thin grid, including physical quantity, surface and upper air meteorological observation, as well as radar observation data. For the environment parameter analysis, small CAPE value tended to underestimate storm intensity on potential forecast stage, strong vertical wind shear revealed the strong dry cold air was the important intensity factors of the storm. The water vapor cloud map can be used to monitor the most important features, the dry zone, the wet zone and the boundary between them. When dry intrusion is found, it can be used as one of the bases for the development of heavy rain. Dry cold air intrusion on high-level was traced by water vapor images. And in this process, the analyses revealed the role of dry cold air’s influence on intensity of the storm.
文摘In this paper we study the strong and weak property of travelling wave front solutions for a class of degenerate parabolic equations. How the strong and weak property changes under the effects of wave speed and reaction diffusion terms are showed.
基金Supported by the National Basic Research and Development(973)Program of China(2013CB430102)Open Research Fund of Key Laboratory of Geographic Information Science(KLGIS2015A01)+3 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201306040,GYHY201306078,and GYHY201506001)National Natural Science Foundation of China(91537214,41275079,41305077,41405069,91537214,41505078,and 41305031)Research Innovation Program for College Graduates of Jiangsu Province(KYZZ-0246)Open Research Fund of State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2016LASW-B12)
文摘To better understand how severe storms form and evolve in the outer rainbands of typhoons, in this study, we in- vestigate the evolutionary characteristics and possible formation mechanisms for severe storms in the rainbands of Typhoon Mujigae, which occurred during 2-5 October 2015, based on the NCEP-NCAR reanalysis data, conventional observations, and Doppler radar data. For the rainbands far from the inner core (eye and eyewall) of Mujigae (dis- tance of approximately 70-800 kin), wind speed first increased with the radius expanding from the inner core, and then decreased as the radius continued to expand. The Rankine Vortex Model was used to explore such variations in wind speed. The areas of strong stormy rainbands were mainly located in the northeast quadrant of Mujigae, and overlapped with the areas of high winds within approximately 300-550 km away from the inner core, where the strong winds were conducive to the development of strong storms. A severe convective cell in the rainbands de- veloped into waterspout at approximately 500 km to the northeast of the inner core, when Mujigae was strengthening before it made landfall. Two severe convective cells in the rainbands developed into two tornadoes at approximately 350 km to the northeast of the inner core after Mujigae made landfall. The radar echo bands enhanced to 60 dBZ when mesocyclones occurred in the rainbands and induced tornadoes. The radar echoes gradually weakened after the mesocyclones weakened. The tops of parent clouds of the mesocyclones elevated at first, and then suddenly dropped about 20 min before the tornadoes appeared. Thereby, the cloud top variation has the potential to be used as an early warning of tornado occurrence.
文摘National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.
文摘Ⅰ. INTRODUCTION In the past years, the attention of many meteorologists has been attracted to the Presidents’ Day snow storm, February 18—19, 1979, not only because of its rareness but also the failure of the operational model (LFM-Ⅱ) of NMC. On February 18—19, 1979, an intensive cyclone developed along the middle Atlantic coast brought about heavy snowfall (45—60 cm) over the middle Atlantic states, from Virginia to southern New Jersey. Regional snowfall rates of 25 mm per hour were common,and local intensities of 100 mm per hour were observed in Washington, D. C. area,