The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo...Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.展开更多
By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in ...By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in the short-term stage before several strong earthquakes. The characteristics of anomaly are: at the beginning, water level dropped abruptly or accelerated to drop; then it turned to slow rising with a smaller amplitude than that of descending; earthquakes occurred during the slow-rising process of water level, and at that time or before earthquake occurrence, water level rose with a large amplitude. Among more than 100 wells in North China, the descending anomalies were not recorded for many times, but similar variation processes of water level were noted at different wells before several strong earthquakes, which proves that seismic precursory anomalies of ground water are of certain recurrence features, occurring repeatedly before different strong earthquakes. Therefore, it is necessary to study the genesis of this type of anomaly and its relationship with strong seismic activity.展开更多
X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of ...X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.展开更多
X oilfield is located in Bohai Sea area, in which G oil formation is a typical drape anticline structure, which is composed of multiple sets of thick sandy conglomerate and multiple sets of argillaceous intercalation....X oilfield is located in Bohai Sea area, in which G oil formation is a typical drape anticline structure, which is composed of multiple sets of thick sandy conglomerate and multiple sets of argillaceous intercalation. From the perspective of development effect, muddy interlayer has a great impact on the oilfield. In this paper, through core identification and well logging identification, the electrical discrimination standard is summarized to identify the interlayer. Through statistics and analysis of the production performance of actual wells, the influence of muddy interlayer on the development performance of oil wells is summarized. This study provides guidance for the development of strong bottom water reservoirs with interlayer.展开更多
The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyz...The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyzed,the features of the infrequent "step" changes of well water level after the two earthquakes were also analyzed and the mechanism of the "step change" of well water level was discussed.Then the high-sample-rate digital observation data of seismically-induced water level fluctuations of the Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 recorded at Nanbin well,Sanya and Tanniu well,Wenchang were analyzed.The results suggest that the dominant period of the seismic well water level fluctuation in all three wells was comparatively accordant,the amplitudes of seismic water level fluctuation of the same earthquake in different wells were clearly different,the time duration of seismic water level fluctuations of different earthquakes at the same well was also clearly different.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021B1515120072)the Natural Science Foundation of China(22279096 and T2241003)the Fundamental Research Funds for the Central Universities(WUT:2023IVA094).
文摘Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability.
基金Key project of Ministry of Science and Technology during the Tenth Five-year Plan(2001BA601B 01-01-01).
文摘By analyzing the relationship between ground water behavior and strong seismic activity during the past more than 20 years in North China, we have found similar water level descending variation of a part of wells in the short-term stage before several strong earthquakes. The characteristics of anomaly are: at the beginning, water level dropped abruptly or accelerated to drop; then it turned to slow rising with a smaller amplitude than that of descending; earthquakes occurred during the slow-rising process of water level, and at that time or before earthquake occurrence, water level rose with a large amplitude. Among more than 100 wells in North China, the descending anomalies were not recorded for many times, but similar variation processes of water level were noted at different wells before several strong earthquakes, which proves that seismic precursory anomalies of ground water are of certain recurrence features, occurring repeatedly before different strong earthquakes. Therefore, it is necessary to study the genesis of this type of anomaly and its relationship with strong seismic activity.
文摘X oilfield is an offshore strong bottom water reservoir with water cut up to 96% at present, and liquid extraction has become one of the main ways to increase oil production. However, the current liquid production of the oilfield reaches 60,000 m</span><sup><span style="font-family:Verdana;">3</span></sup><span style="font-family:Verdana;">/d due to the limitation of offshore platform, well trough and equipment, the oilfield is unable to continue liquid extraction. In order to maximize the oil production of the oilfield, it is necessary to study the strategy of shut in and cone pressure. Through numerical simulation, this paper analyzes the influence of different factors, such as crude oil density, viscosity, reservoir thickness, interlayer, permeability and so on, on the drop height of water cone and the effect of precipitation and oil increase after well shut in. At the same time, the weight of each factor is analyzed by combining the actual dynamic data with the fuzzy mathematics method, and the strategy of well shut in and cone pressure is formulated for the offshore strong bottom water reservoir. It provides the basis and guidance for the reasonable use of shut in pressure cone when the reservoir with strong bottom water meets the bottleneck of liquid volume.
文摘X oilfield is located in Bohai Sea area, in which G oil formation is a typical drape anticline structure, which is composed of multiple sets of thick sandy conglomerate and multiple sets of argillaceous intercalation. From the perspective of development effect, muddy interlayer has a great impact on the oilfield. In this paper, through core identification and well logging identification, the electrical discrimination standard is summarized to identify the interlayer. Through statistics and analysis of the production performance of actual wells, the influence of muddy interlayer on the development performance of oil wells is summarized. This study provides guidance for the development of strong bottom water reservoirs with interlayer.
基金sponsored by Joint Earthquake Science Foundation of China (105086)
文摘The characteristics of seismic water level fluctuations of the two Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 on December 26,2004 and March 29,2005 recorded at Jiaji well,Qionghai,Hainan were analyzed,the features of the infrequent "step" changes of well water level after the two earthquakes were also analyzed and the mechanism of the "step change" of well water level was discussed.Then the high-sample-rate digital observation data of seismically-induced water level fluctuations of the Sumatra-Andaman strong earthquakes with magnitude 8.7 and 8.5 recorded at Nanbin well,Sanya and Tanniu well,Wenchang were analyzed.The results suggest that the dominant period of the seismic well water level fluctuation in all three wells was comparatively accordant,the amplitudes of seismic water level fluctuation of the same earthquake in different wells were clearly different,the time duration of seismic water level fluctuations of different earthquakes at the same well was also clearly different.