The interaction of an atom with an intense laser field provides an important approach to explore the ultrafast electron dynamics and extract the information of the atomic and molecular structures with unprecedented at...The interaction of an atom with an intense laser field provides an important approach to explore the ultrafast electron dynamics and extract the information of the atomic and molecular structures with unprecedented attosecond temporal and angstrom spatial resolution. To well understand the strong field atomic processes, numerous theoretical methods have been developed, including solving the time-dependent Schr ?dinger equation(TDSE), classical and semiclassical trajectory method, quantum S-matrix theory within the strong-field approximation, etc. Recently, an alternative and complementary quantum approach, called Bohmian trajectory theory, has been successfully used in the strong-field atomic physics and an exciting progress has been achieved in the study of strong-field phenomena. In this paper, we provide an overview of the Bohmian trajectory method and its perspective on two strong field atomic processes, i.e., atomic and molecular ionization and high-order harmonic generation, respectively.展开更多
Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.Th...Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.展开更多
Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C,...Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.展开更多
Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical a...Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical and numerical research progress of this challenging topic is reviewed.Many new findings are presented by different approaches such as the worldline instantons,the S-matrix theory,the kinetic method by solving the quantum Vlasov equation or/and the real-time DiraceHeisenbergeWigner formalism,the computational quantum field theory by solving the Dirac equation and so on.In particular,the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra.The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented.The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings.These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization.More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.展开更多
Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various ...Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various fragment ions(CO^+,O^n+, and C^n+(n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 ×10^13W/cm2 to 6.0 × 10^14W/cm^2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than2.0 × 10^14W/cm^2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules.展开更多
Strong field ionization-photofragmentation(SFI-PF)with ultrafast pump–probe scheme is a powerful approach to study the dynamics of molecular cationic electronic states.Here we carry out a SFI-PF study on the cationic...Strong field ionization-photofragmentation(SFI-PF)with ultrafast pump–probe scheme is a powerful approach to study the dynamics of molecular cationic electronic states.Here we carry out a SFI-PF study on the cationic electronic states of vinyl bromide,C_(2)H_(3)Br.The yields of the parent C_(2)H_(3)Br_(+)and the formation of the fragment(Br^(+),C_(2)H^(+)2 and C_(2)H^(+)3)ions have been measured at different pump–probe delay time.Analysis provides experimental evidence of A^(2)A'–X^(2)A'' internal conversion of vinyl bromide cations which occurs in a time of about 220 fs,and the time of C_(2)H_(3)^(+) formation induced by the dissociation of the A^(2)A' state around 300 fs.The study would add our knowledge of the behavior of electronic excited states of complex molecular cations.展开更多
Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at ...Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at low laser intensity, the parent ions are dominant for any one of the molecules in an 800-nm strong laser field, while extensive fragmentation is observed in a 400-nm laser field, which can be understood by the resonant photon absorption of molecular cations. The ratio of the yield of the parent ion to the yield of the total ion for each molecule is measured as a function of laser intensity in a range from 1.0 × 1013 W/cm2 to 4.0 × 1014 W/cm2, in either the 800-nm or 400-nm laser field. The results show that the fragmentation of the aromatic molecules increases significantly as the laser intensity is increased. Possible mechanisms for fragmentation in strong laser fields are discussed. Finally, the saturation intensity of ionization of the titled molecules is also determined.展开更多
Electron–electron correlation plays an important role in the underlying dynamics in physics and chemistry.Helium is the simplest and most fundamental two-electron system.The dynamic process of helium in a strong lase...Electron–electron correlation plays an important role in the underlying dynamics in physics and chemistry.Helium is the simplest and most fundamental two-electron system.The dynamic process of helium in a strong laser field is still a challenging issue because of the large calculation cost.In this study,a graphic processing unit(GPU)open ACC based ab initio numerical simulations package He TDSE is developed to solve the full-dimensional time-dependent Schrodinger equation of helium subjected to a strong laser pulse.He TDSE uses B-spline basis sets expansion method to construct the radial part of the wavefunction,and the spherical harmonic functions is used to express for the angular part.Adams algorithm is employed for the time propagation.Our example shows that He TDSE running on an NVIDIA Kepler K20 GPU can outperform the one on an Intel E5-2640 single CPU core by a factor of 147.He TDSE code package can be obtained from the author or from the author's personal website(doi:10.13140/RG.2.2.15334.45128)directly under the GPL license,so He TDSE can be downloaded,used and modified freely.展开更多
By using a heated molecular beam in combination with a time-of-flight mass spectrometer, we experimentally study the ionization of vibrational-hot carbon disulfide(CS2) molecules irradiated by a linearly polarized 8...By using a heated molecular beam in combination with a time-of-flight mass spectrometer, we experimentally study the ionization of vibrational-hot carbon disulfide(CS2) molecules irradiated by a linearly polarized 800-nm 50-fs strong laser field. The ion yields are measured in a laser intensity range of 7.0 × 10^(12) W/cm^2–1.5 × 10^(14) W/cm^2 at different molecular temperatures of up to 1400 K. Enhanced ionization yield is observed for vibrationally excited CS2 molecules.The results show that the enhancement decreases as the laser intensity increases, and exhibits non-monotonical dependence on the molecular temperature. According to the calculated potential energy curves of the neutral and ionic electronic states of CS2, as well as the theoretical models of molecular strong-field ionization available in the literature, we discuss the mechanism of the enhanced ionization of vibrational-hot molecules. It is indicated that the enhanced ionization could be attributed to both the reduced ionization potential with vibrational excitation and the Frank–Condon factors between the neutral and ionic electronic states. Our study paves the way to understanding the effect of nuclear motion on the strongfield ionization of molecules, which would give a further insight into theoretical and experimental investigations on the interaction of polyatomic molecules with strong laser fields.展开更多
Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the ...Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.展开更多
We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H2^2+ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum m...We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H2^2+ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum molecular dynamics(TDDFT-MD) simulation.This work is based on a recent experiment study "ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene" [Wolter et al.Science 354,308-3 12(2016)].Our simulations are in excellent agreement with the experimental data and the analysis confirms that the alignment dependence of the proton dissociation dynamics comes from the electron response of the driving laser pulse.Our results validate the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed and control molecular dissociation dynamics.展开更多
Theoretically based on the four-level model,one LICET process in Eu-Sr system in both weak and strong fields was calculated by immediate numerical integrations.Numerical results in weak field are in fair to good agree...Theoretically based on the four-level model,one LICET process in Eu-Sr system in both weak and strong fields was calculated by immediate numerical integrations.Numerical results in weak field are in fair to good agreement with analytical ones.Numerical results in strong field show that:(a)the peak of the LICET profiles moves to the violet side and the tuning range of the profiles obviously becomes narrower when the laser field intensity increases;and(b)numerical results in strong field differ a lot from analytical ones,which indicates that in strong field,the analytical expressions are not applicable any longer.展开更多
The performances by young Chinese Athletes in Berlin boosted confidence ahead of the London Olympics chinese athletes secured their ’country’s third best-ever track
With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Luo Junwei(骆军委)from the Institute of Semiconductors,Chinese Academy of Sciences discovered a rapid tran...With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Luo Junwei(骆军委)from the Institute of Semiconductors,Chinese Academy of Sciences discovered a rapid transition of the hole Rashba effect from strong field dependence to saturation展开更多
Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their divers...Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their diverse geometric structures, molecular electronic orbitals as well as extra nuclear degrees of freedom. In this study, we investigate strong field single and double ionization of carbon monoxide (CO) and carbon dioxide (CO2) in linearly polarized 50-fs, 800-nm laser fields with peak intensity in the range of 2×10 13 W/cm2 to 2×10 14 W/cm2 using time-of-flight mass spectrometer. By comparing the ionization yields with that of the companion atom krypton (Kr), which has similar ionization potential to the molecules, we investigate the effect of molecular electronic orbitals on the strong-field ionization. The results show that comparing to Kr, no significant suppression is observed in single ionization of both molecules and in non-sequential double ionization (NSDI) of CO, while the NSDI probability of CO2 is strongly suppressed. Based on our results and previous studies on homonuclear diatomic molecules (N2 and O2), the mechanism of different suppression effect is discussed. It is indicated that the different structure of the highest occupied molecular orbitals of CO and CO2 leads to distinct behaviors in two-center interference by the electronic wave-packet and angular distributions of the ionized electrons, resulting in different suppression effect in strong-field ionization.展开更多
Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatur...Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatures are derived, and the effects of the magnetic field on the statistic properties of the system are analysed. It is shown that, as long as the temperature is not zero, the effects of the magnetic field on the thermodynamic quantities of the system contain both oscillatory and non-oscillatory parts. For the non-oscillatory part, compared with the situation of Fermi gas in a weak magnetic field, the influence of the magnetic field on the thermodynamic quantities is not exactly the same. For the oscillatory part, the period and amplitude of the oscillation are all related to the magnetic field. Due to the oscillation, the chemical potential may be greater than Ferim energy of the system, but the oscillation does not affect the thermodynamic stability of the system.展开更多
The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent y...The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.展开更多
A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper. The fault plane of the source is divided into a number of sub-sources, the whole moment...A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper. The fault plane of the source is divided into a number of sub-sources, the whole moment magnitude is also divided into more sub-events. The Fourier spectrum of ground motion caused by a sub-event in given sub-source, then can be derived by means of taking the point source spectrum, attenuation with distance, energy dissipation, and near surface effect, into account. A time history is synthesized from this amplitude spectrum and a random phase spectrum, and being combined with an envelope function. The ground motion is worked out by superposition of all time histories from each sub-event in each sub-source, with time lags determining by the differences between the triggering times of sub-events and distances of the sub-sources. From the example of simulations at 21 near field points in a scenario earthquake with 4 dip angles of the fault plane, it is illustrated that the procedure can describe the rupture directivity and hanging wall effect very well. To validate the procedure, the response spectra and time histories recorded at three near fault stations MCN, LV3 and PCD during the Northridge earthquake in 1994, are compared with the simulated ones.展开更多
The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorpti...The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries.展开更多
β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak ...β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11922413,11834015,11874392,11804374,11847243,and 11774387)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB21010400)
文摘The interaction of an atom with an intense laser field provides an important approach to explore the ultrafast electron dynamics and extract the information of the atomic and molecular structures with unprecedented attosecond temporal and angstrom spatial resolution. To well understand the strong field atomic processes, numerous theoretical methods have been developed, including solving the time-dependent Schr ?dinger equation(TDSE), classical and semiclassical trajectory method, quantum S-matrix theory within the strong-field approximation, etc. Recently, an alternative and complementary quantum approach, called Bohmian trajectory theory, has been successfully used in the strong-field atomic physics and an exciting progress has been achieved in the study of strong-field phenomena. In this paper, we provide an overview of the Bohmian trajectory method and its perspective on two strong field atomic processes, i.e., atomic and molecular ionization and high-order harmonic generation, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11420101003,11604347,11827806,11874368,61675213,and 91636105)
文摘Bichromatic circularly polarized fields provide a useful tool to probe the ionization dynamics.In this work, we compare the photoelectron momentum distribution in few-cycle bichromatic field of different helicities.The spectral features are analyzed with semiclassical trajectories derived from the strong field approximation.In particular, the interference fringes in momentum distribution are investigated by tracking the ionization time and tunneling exits of released photoelectrons.Different types of trajectories that contribute to the interference fringes are elucidated.
基金Project supported by the National Key Program for S&T Research and Development(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.12174148,11874179,12074144,and 12074146)。
文摘Rydberg state excitation(RSE) is a highly non-linear physical phenomenon that is induced by the ionization of atoms or molecules in strong femtosecond laser fields. Here we observe that both parent and fragments(S, C, OC) of the triatomic molecule carbonyl sulfide(OCS) can survive strong 800 nm or 400 nm laser fields in high Rydberg states. The dependence of parent and fragment RSE yields on laser intensity and ellipticity is investigated in both laser fields, and the results are compared with those for strong-field ionization. Distinctly different tendencies for laser intensity and ellipticity are observed for fragment RSE compared with the corresponding ions. The mechanisms of RSE and strong-field ionization of OCS molecules in different laser fields are discussed based on the experimental results. Our study sheds some light on the strong-field excitation and ionization of molecules irradiated by femtosecond NIR and UV laser fields.
基金This work was supported by the National Natural Science Foundation of China(NSFC)under Grant Nos.11475026,11175023also supported partially by the Open Fund of National Laboratory of Science and Technology on Computational Physics at IAPCM and the Fundamental Research Funds for the Central Universities(FRFCU).
文摘Electronepositron pair production due to the decay of vacuum in ultrastrong laser fields is an interesting topic which is revived recently because of the rapid development of current laser technology.The theoretical and numerical research progress of this challenging topic is reviewed.Many new findings are presented by different approaches such as the worldline instantons,the S-matrix theory,the kinetic method by solving the quantum Vlasov equation or/and the real-time DiraceHeisenbergeWigner formalism,the computational quantum field theory by solving the Dirac equation and so on.In particular,the effects of electric field polarizations on pair production are unveiled with different patterns of created momentum spectra.The effects of polarizations on the number density of created particles and the nonperturbative signatures of multiphoton process are also presented.The competitive interplay between the multiphoton process and nonperturbation process plays a key role in these new findings.These newly discovered phenomena are valuable to deepen the understanding of pair production in complex fields and even have an implication to the study of strong-field ionization.More recent studies on the pair production in complex fields as well as beyond laser fields are briefly presented in the view point of perspective future.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant Nos.11034003 and 11274140)
文摘Ionization and dissociation of linear triatomic molecules, carbon dioxide, are studied in 50-fs 800-nm strong laser fields using time-of-flight mass spectrometer. The yields of double charged ions CO2^2+ and various fragment ions(CO^+,O^n+, and C^n+(n = 1, 2)) are measured as a function of ellipticity of laser polarization in the intensity range from 5.0 ×10^13W/cm2 to 6.0 × 10^14W/cm^2. The results demonstrate that non-sequential double ionization, which is induced by laser-driven electron recollision, dominates double ionization of CO2 in the strong IR laser field with intensity lower than2.0 × 10^14W/cm^2. The electron recollision could also have contribution in strong-field multiple ionization and formation of fragments of CO2 molecules. The present study indicates that the intensity and ellipticity dependence of ions yields can be used to probe the complex dynamics of strong-field ionization/dissociation of polyatomic molecules.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0307700)the National Natural Science Foundation of China(Grant Nos.11874179,11704149,and 12074144)+1 种基金the Natural Science Foundation of Jilin Province,China(Grant Nos.20180101289JC and 20190103045JH)the Science and Technology Project of the Jilin Provincial Education Department,China(Grant No.JJKH20190184KJ)。
文摘Strong field ionization-photofragmentation(SFI-PF)with ultrafast pump–probe scheme is a powerful approach to study the dynamics of molecular cationic electronic states.Here we carry out a SFI-PF study on the cationic electronic states of vinyl bromide,C_(2)H_(3)Br.The yields of the parent C_(2)H_(3)Br_(+)and the formation of the fragment(Br^(+),C_(2)H^(+)2 and C_(2)H^(+)3)ions have been measured at different pump–probe delay time.Analysis provides experimental evidence of A^(2)A'–X^(2)A'' internal conversion of vinyl bromide cations which occurs in a time of about 220 fs,and the time of C_(2)H_(3)^(+) formation induced by the dissociation of the A^(2)A' state around 300 fs.The study would add our knowledge of the behavior of electronic excited states of complex molecular cations.
基金supported by the National Basic Research Program of China(Grant No.2013CB922200)the National Natural Science Foundation of China(Grant No.11274140)
文摘Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene are studied in linearly polarized 50-fs, 800-nm and 400-nm strong laser fields using a time-of-flight mass spectrometer. It is shown that at low laser intensity, the parent ions are dominant for any one of the molecules in an 800-nm strong laser field, while extensive fragmentation is observed in a 400-nm laser field, which can be understood by the resonant photon absorption of molecular cations. The ratio of the yield of the parent ion to the yield of the total ion for each molecule is measured as a function of laser intensity in a range from 1.0 × 1013 W/cm2 to 4.0 × 1014 W/cm2, in either the 800-nm or 400-nm laser field. The results show that the fragmentation of the aromatic molecules increases significantly as the laser intensity is increased. Possible mechanisms for fragmentation in strong laser fields are discussed. Finally, the saturation intensity of ionization of the titled molecules is also determined.
基金the National Natural Science Foundation of China(Grant Nos.11904192,11604119,11627807,and 11604131)the Natural Science Basic Research Plan of Shaanxi Province of China(Grant No.2016JM1012)+2 种基金the Natural Science Foundation of the Education Committee of Shaanxi Province of China(Grant No.18JK0050)the Science Foundation of Baoji University of Arts and Sciences of China(Grant No.ZK16069)the Natural Science Foundation of Liaoning Province of China(Grant No.LQ 2020022)。
文摘Electron–electron correlation plays an important role in the underlying dynamics in physics and chemistry.Helium is the simplest and most fundamental two-electron system.The dynamic process of helium in a strong laser field is still a challenging issue because of the large calculation cost.In this study,a graphic processing unit(GPU)open ACC based ab initio numerical simulations package He TDSE is developed to solve the full-dimensional time-dependent Schrodinger equation of helium subjected to a strong laser pulse.He TDSE uses B-spline basis sets expansion method to construct the radial part of the wavefunction,and the spherical harmonic functions is used to express for the angular part.Adams algorithm is employed for the time propagation.Our example shows that He TDSE running on an NVIDIA Kepler K20 GPU can outperform the one on an Intel E5-2640 single CPU core by a factor of 147.He TDSE code package can be obtained from the author or from the author's personal website(doi:10.13140/RG.2.2.15334.45128)directly under the GPL license,so He TDSE can be downloaded,used and modified freely.
基金supported by the National Natural Science Foundation of China(Grant Nos.91750104,11704004,11704149,and 11474130)the Natural Science Foundation of Jilin Province,China(Grant No.20180101289JC)
文摘By using a heated molecular beam in combination with a time-of-flight mass spectrometer, we experimentally study the ionization of vibrational-hot carbon disulfide(CS2) molecules irradiated by a linearly polarized 800-nm 50-fs strong laser field. The ion yields are measured in a laser intensity range of 7.0 × 10^(12) W/cm^2–1.5 × 10^(14) W/cm^2 at different molecular temperatures of up to 1400 K. Enhanced ionization yield is observed for vibrationally excited CS2 molecules.The results show that the enhancement decreases as the laser intensity increases, and exhibits non-monotonical dependence on the molecular temperature. According to the calculated potential energy curves of the neutral and ionic electronic states of CS2, as well as the theoretical models of molecular strong-field ionization available in the literature, we discuss the mechanism of the enhanced ionization of vibrational-hot molecules. It is indicated that the enhanced ionization could be attributed to both the reduced ionization potential with vibrational excitation and the Frank–Condon factors between the neutral and ionic electronic states. Our study paves the way to understanding the effect of nuclear motion on the strongfield ionization of molecules, which would give a further insight into theoretical and experimental investigations on the interaction of polyatomic molecules with strong laser fields.
文摘Motivated by ITER(the International Thermonuclear Experimental Reactor), research on a magnetic shield against a strong field has been carried out. In this paper, a cylindric magnetic shield is studied by using the finite element method with a nonlinear magnetization curve. The geometrical aspects of shielding performance are identified and corresponding suggestions for application are provided. Among them, the effects of the edge and cover thickness have not been mentioned elsewhere to our knowledge.
基金supported by Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant No. DE-FG02-86ER13491)the National Natural Science Foundation of China (Grant No. 11904192)+4 种基金supported by the National Natural Science Foundation of China (Grant No. 11975012)supported by the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2016JM1012)the Natural Science Foundation of the Educational Department of Shaanxi Province, China (Grant No. 18JK0050),the Science Foundation of Baoji University of Arts and Sciences of China (Grant No. ZK16069)supported by the National Natural Science Foundation of China (Grant Nos. 11604119 and 11627807)supported by the National Natural Science Foundation of China (Grant No. 11604131)
文摘We investigate the alignment dependence of the strong laser dissociation dynamics of molecule C2H2^2+ in the frame of real-time and real-space time-dependent density function theory coupled with nonadiabatic quantum molecular dynamics(TDDFT-MD) simulation.This work is based on a recent experiment study "ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene" [Wolter et al.Science 354,308-3 12(2016)].Our simulations are in excellent agreement with the experimental data and the analysis confirms that the alignment dependence of the proton dissociation dynamics comes from the electron response of the driving laser pulse.Our results validate the ability of the TDDFT-MD method to reveal the underlying mechanism of experimentally observed and control molecular dissociation dynamics.
文摘Theoretically based on the four-level model,one LICET process in Eu-Sr system in both weak and strong fields was calculated by immediate numerical integrations.Numerical results in weak field are in fair to good agreement with analytical ones.Numerical results in strong field show that:(a)the peak of the LICET profiles moves to the violet side and the tuning range of the profiles obviously becomes narrower when the laser field intensity increases;and(b)numerical results in strong field differ a lot from analytical ones,which indicates that in strong field,the analytical expressions are not applicable any longer.
文摘The performances by young Chinese Athletes in Berlin boosted confidence ahead of the London Olympics chinese athletes secured their ’country’s third best-ever track
文摘With the support by the National Natural Science Foundation of China,a study by the research group led by Prof.Luo Junwei(骆军委)from the Institute of Semiconductors,Chinese Academy of Sciences discovered a rapid transition of the hole Rashba effect from strong field dependence to saturation
文摘Ionization is the fundamental process in interaction of atoms/molecules with femtosecond strong laser fields. Comparing to atoms, molecules exhibit peculiar behaviors in strong-field ionization because of their diverse geometric structures, molecular electronic orbitals as well as extra nuclear degrees of freedom. In this study, we investigate strong field single and double ionization of carbon monoxide (CO) and carbon dioxide (CO2) in linearly polarized 50-fs, 800-nm laser fields with peak intensity in the range of 2×10 13 W/cm2 to 2×10 14 W/cm2 using time-of-flight mass spectrometer. By comparing the ionization yields with that of the companion atom krypton (Kr), which has similar ionization potential to the molecules, we investigate the effect of molecular electronic orbitals on the strong-field ionization. The results show that comparing to Kr, no significant suppression is observed in single ionization of both molecules and in non-sequential double ionization (NSDI) of CO, while the NSDI probability of CO2 is strongly suppressed. Based on our results and previous studies on homonuclear diatomic molecules (N2 and O2), the mechanism of different suppression effect is discussed. It is indicated that the different structure of the highest occupied molecular orbitals of CO and CO2 leads to distinct behaviors in two-center interference by the electronic wave-packet and angular distributions of the ionized electrons, resulting in different suppression effect in strong-field ionization.
文摘Based on the thermodynamic potential function of Fermi gas in a strong magnetic field, using the thermodynamics method, the integrated analytical expressions of thermodynamic quantities of the system at low temperatures are derived, and the effects of the magnetic field on the statistic properties of the system are analysed. It is shown that, as long as the temperature is not zero, the effects of the magnetic field on the thermodynamic quantities of the system contain both oscillatory and non-oscillatory parts. For the non-oscillatory part, compared with the situation of Fermi gas in a weak magnetic field, the influence of the magnetic field on the thermodynamic quantities is not exactly the same. For the oscillatory part, the period and amplitude of the oscillation are all related to the magnetic field. Due to the oscillation, the chemical potential may be greater than Ferim energy of the system, but the oscillation does not affect the thermodynamic stability of the system.
基金supported by Shanghai Natural Science Foundation(No.14ZR1403000)1000 Young Talents Program of China+2 种基金the National Natural Science Foundation of China(No.11535012)supported by China Postdoctoral Science Foundation under Grant No.2016M590312support from RIKEN-BNL Research Center
文摘The relativistic heavy-ion collisions create both hot quark–gluon matter and strong magnetic fields, and provide an arena to study the interplay between quantum chromodynamics and quantum electrodynamics. In recent years, it has been shown that such an interplay can generate a number of interesting quantum phenomena in hadronic and quark–gluon matter. In this short review, we first discuss some properties of the magnetic fields in heavy-ion collisions and then give an overview of the magnetic fieldinduced novel quantum effects. In particular, we focus on the magnetic effect on the heavy flavor mesons, the heavyquark transports, and the phenomena closely related to chiral anomaly.
基金Earthquake Science Foundation under Contract No.201009
文摘A random synthesis procedure based on finite fault model is adopted for near field strong ground motion simulation in this paper. The fault plane of the source is divided into a number of sub-sources, the whole moment magnitude is also divided into more sub-events. The Fourier spectrum of ground motion caused by a sub-event in given sub-source, then can be derived by means of taking the point source spectrum, attenuation with distance, energy dissipation, and near surface effect, into account. A time history is synthesized from this amplitude spectrum and a random phase spectrum, and being combined with an envelope function. The ground motion is worked out by superposition of all time histories from each sub-event in each sub-source, with time lags determining by the differences between the triggering times of sub-events and distances of the sub-sources. From the example of simulations at 21 near field points in a scenario earthquake with 4 dip angles of the fault plane, it is illustrated that the procedure can describe the rupture directivity and hanging wall effect very well. To validate the procedure, the response spectra and time histories recorded at three near fault stations MCN, LV3 and PCD during the Northridge earthquake in 1994, are compared with the simulated ones.
基金financially sponsored by the National Natural Science Foundation of China(51872208 and 52072273)the Zhejiang Provincial Special Support Program for High-level Talents(2019R52042)。
文摘The shuttle effect of polysulfides is a major challenge for the commercialization of lithium-sulfur battery.The systematic modification of separators has the potential to solve these problems by enhancing the adsorption and catalytic conversion of polysulfides.Herein,strong internal electric field bismuth oxycarbonate(Bi_(2)O_(2)CO_(3))nanoflowers decorated conductive carbon(DC+BOC)is proposed to be systematically modified on separator.This intermediate layer not only possesses a strong affinity for polysulfides,but also promotes the conversion of polysulfides and induces the formation of a stable solid electrolyte interphase(SEI)layer,thereby improving the rate performance and cycling stability of the battery.As expected,the modified membrane achieved a high specific capacity of 713 mA h g^(-1) at 5 C.At 1 C,high reversibility of 719 mA h g^(-1) was achieved after 550 cycles with only 0.044%decay per cycle.More importantly,under the sulfur loading of 5.1 mg cm^(-2),the area specific capacity remained at4.1 mA h cm^(-2) after 200 cycles,and the attenuation rate per cycle was only 0,056%.This work provides a new strategy to overcome the shuttle effect of polysulfide,and shows great potential in the application of high-performance lithium-sulfur batteries.
基金Project suoported by the National Natural Science Foundation of China (Grant No 10347008).
文摘β decay in the strong magnetic field of the crusts of neutron stars is analysed by an improved method. The reactions ^67Ni(β-)^67Cu and ^62Mn(β-)^62Fe are investigated as examples. The results show that a weak magnetic field has little effect on β decay but a strong magnetic field (B 〉 10^12G) increases β decay rates obviously. The conclusion derived may be crucial to the research of late evolution of neutron stars and nucleosynthesis in r-process.