The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/...The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.展开更多
This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to h...This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to high temperature and high salt, was tested, and concluded that its gelling properties, salt and temperature resistance, and environmental protection were all in line with industry requirements. The final drilling fluid formula was developed as: water + (0.3% ~ 0.5%) NaOH + 5% KCl + 2% WGL-1 + 5% NaCl + (1.0% ~ 2.0%) HBFR Anti-high temperature fluid loss agent + 2% Polyol + (1.5% ~ 2.0%) SDL-1 Lubricant + 0.4% A4O1. The performance of the liquid was tested for temperature resistance, inhibition, gas formation protection effect, plugging performance, and static settlement stability. It was concluded that the temperature resistance performance is satisfied at 150°C, and the cuttings recovery rate is as high as 96.78%. It has good performance in inhibiting water dispersion and swelling of cuttings. The permeability recovery value reaches 88.9%, which meets the requirements of gas formation protection. The SSSI value shows that its settlement stability is good;under high temperature and high pressure, its sealing performance is good. This drilling fluid system has achieved the expected results and laid a foundation for further promoting the development of solid-free drilling fluid systems. The future development direction of solid-free drilling fluids is pointed out, to the improvement of properties to be applied in high temperature environment and have high salt resistance capacity.展开更多
Formate drilling and completion fluid system is a new type of clean organic salt brine system which has been developed from inorganic salt brine drilling fluid system. It is beneficial to protecte and find hydrocarbon...Formate drilling and completion fluid system is a new type of clean organic salt brine system which has been developed from inorganic salt brine drilling fluid system. It is beneficial to protecte and find hydrocarbon reservoir. Due to the solid free system, the damage of solid phase particles on reservoir, especially low permeability oil and gas layer, can be greatly eliminated, at the same time, drilling fluid and completion fluid have greater compatibility. It will avoid that precipitation which is not compatible with drilling and completion fluid and generates damages on reservoir. And because mud cake of the solid free system is thin and resilient, it is conductive to improve cementing quality greatly. Experiments show that the formate drilling and completion system has good rheological property, strong inhibition ability, good lubricating performance, good compatibility with reservoir rocks and formation water at high temperature.展开更多
文摘The increasing application of near balanced drilling technology to low-pressure and depleted fractured reservoirs requires the use of low-density drilling fluids to avoid formation damage. Solidsfree oil-in-water (O/W) emulsion drilling fluid is one type of low-density drilling fluid suitable for depleted fractured reservoirs. In this paper, the solids-free O/W drilling fluid was developed and has been successfully used in the Bozhong 28-1 oil and gas field, by which lost circulation, a severe problem occurred previously when drilling into fractured reservoir beds, was controlled, thereby minimizing formation damage. The O/W emulsion drilling fluid was prepared by adding 20% (by volume) No. 5 mineral oil (with high flash point, as dispersed phase) into seawater (as continuous phase). Surfactant HTO-1 (as a primary emulsifier) and non-ionic surfactant HTO-2 (as a secondary emulsifier) were added into the drilling fluid system to stabilize the emulsion; and YJD polymer was also added to seawater to improve the viscosity of the continuous phase (seawater). The drilling fluid was characterized by high flash point, good thermal stability and high stability to crude oil contamination.
文摘This project is explaining a laboratory development of a solid free drilling fluid formula that could be potentially used in tight gas reservoirs. The configuration of the weak gel fluid WGL-1, which is resistant to high temperature and high salt, was tested, and concluded that its gelling properties, salt and temperature resistance, and environmental protection were all in line with industry requirements. The final drilling fluid formula was developed as: water + (0.3% ~ 0.5%) NaOH + 5% KCl + 2% WGL-1 + 5% NaCl + (1.0% ~ 2.0%) HBFR Anti-high temperature fluid loss agent + 2% Polyol + (1.5% ~ 2.0%) SDL-1 Lubricant + 0.4% A4O1. The performance of the liquid was tested for temperature resistance, inhibition, gas formation protection effect, plugging performance, and static settlement stability. It was concluded that the temperature resistance performance is satisfied at 150°C, and the cuttings recovery rate is as high as 96.78%. It has good performance in inhibiting water dispersion and swelling of cuttings. The permeability recovery value reaches 88.9%, which meets the requirements of gas formation protection. The SSSI value shows that its settlement stability is good;under high temperature and high pressure, its sealing performance is good. This drilling fluid system has achieved the expected results and laid a foundation for further promoting the development of solid-free drilling fluid systems. The future development direction of solid-free drilling fluids is pointed out, to the improvement of properties to be applied in high temperature environment and have high salt resistance capacity.
文摘Formate drilling and completion fluid system is a new type of clean organic salt brine system which has been developed from inorganic salt brine drilling fluid system. It is beneficial to protecte and find hydrocarbon reservoir. Due to the solid free system, the damage of solid phase particles on reservoir, especially low permeability oil and gas layer, can be greatly eliminated, at the same time, drilling fluid and completion fluid have greater compatibility. It will avoid that precipitation which is not compatible with drilling and completion fluid and generates damages on reservoir. And because mud cake of the solid free system is thin and resilient, it is conductive to improve cementing quality greatly. Experiments show that the formate drilling and completion system has good rheological property, strong inhibition ability, good lubricating performance, good compatibility with reservoir rocks and formation water at high temperature.