Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accur...Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.展开更多
Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of severa...Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.展开更多
The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake moni...The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.展开更多
The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and...The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.展开更多
The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture,...The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture, geothermalstructure in the crust and upper mantle in Yunnan area. The results show that the occurrence of strong earthquakes in Yunnan region is obviously related to the deep medium and tectonic environment such as the existenceof the high velocity zone in the upper crust, the low velocity zone or high electrical conductivity layer in themiddle crust, local uplift in the upper mantle, high geothermal activity and deep and large fault, etc. The large earthquakes could not take place at anywhere, they often occur at some regions which have a certainbackground in the deep medium structure. The activity of the earthquakes with magnitude of 5 or less is quite random,the occurrence of them have not the obvious background of the deep medium strUcture.展开更多
During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be...During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be applied to site effect analyses, and then the site classification of those permanent stations can be carried out firstly, which will served as the fundamental information for further research. In this paper, the site of near-fault stations is classified by horizontal-to-vertical spectral ratio (HVSR) method according to the site class description of Japan earthquake resistant design code and response spectral shapes (RSS) method following the site class description of the 1997 Uniform Building Code (UBC) provisions. Then based on the detailed borehole data of those free-field stations, the equivalent shear wave velocity and overburden thickness are calculated and the site classifications are given by Chinese code for seismic design of buildings. Furthermore, for the stations having successful microtremor test data, the site dominant periods are computed to verify the results of site classification. Finally, combined with all the above results, the recommended site classes of near-fault permanent free-field stations are given.展开更多
In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures a...In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures are studied.The research results indicate that:① Mosaic distribution of low-velocity bodies and high-velocity bodies, especially the existence of high-velocity bodies with large size in crust are the common basis of development of thetwo earthquake sequences. ② Scale, depth, and heterogeneity of high-velocity and low-velocity bodies are theimportant factors to effect the characteristic of earthquake sequences. ③ The depth of the high-velocity body inTangshan area is less than that in Xingtai area, which is the principal reason why the dominant focal depth and thebiggest focal depth of Tangshan earthquake sequence are less than Xingtai's. ④ The depth of the high-velocitybodies in Ninghe area is more than that in Tangshan-Luanxian area, which lead to the biggest magnitude and epicentral intensity are lower. These results could be helpful for predicting the main shock of strong swarm-typeearthquakes and later strong aftershocks.展开更多
Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(gr...Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(greater than or equal to M6.0) of the MS8.0 Wenchuan earthquake by using the magnitude and statistical parameters of earthquakes in California area of USA.The number of strong aftershocks,the parameters of Gutenberg-Richter's relation and the modified form of Omori's law are validated based on the relocation data of aftershock sequence of the MS8.0 Wenchuan earthquake.Moreover,the spatio-temporal characteristics and wave energy release of the strong aftershocks(M≥6.0) are analyzed.The result shows that strong aftershocks may occur at the end of local drop and sharp drop on the wave energy release curve.展开更多
The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthqua...The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthquake in 2010, and Ms7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the pre- dicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.展开更多
Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the locat...Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the location results of MS>=3.0 earthquakes of Jiashi swarm obtained by using this method with that by the traditional absolute method, the result obtained by using the master event method shows more reasonable and more consistent with that from the focal mechanism solutions. After relocation, we can see, the epicenters of M>=5.0 earthquakes show an echelon-type alignment along NNW-SSE direction, and all earthquakes concentrate nearly in a volume region about 30 km (N-S) × 15 km (E-W) × 15 km (U-D). Earthquake focal depths are mainly in the range of 15-28 km.展开更多
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ar...The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.展开更多
From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted syste...From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit.展开更多
Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By rep...Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.展开更多
The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were acc...The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Obser- vation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as -1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3-1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.展开更多
The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selecte...The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selected the landslides induced in the town as representative of large-scale near-rupture landslides, and quantitatively analyzed why the landslide damage was so destructive in the town by using strong motion data obtained from the Wenchuan earthquake in the Longmenshan area. Three methods were employed to estimate the landslide damage using strong motion data. (1) Peak ground accelerations (PGAs) on the hanging wall were used to evaluate the PGAs on the landslide sites in the town. The evaluated average PGAs were all greater than I g, indicating that the ground motion intensity was very strong during the earthquake. (2) Acceleration time histories, from another station with similar geological conditions to the town, were used to evaluate the critical acceleration changing range, and the estimated values showed the geological conditions were very susceptible to earthquakes. (3) Acceleration time histories, from two stations on the hanging and foot walls of the rupture, and near the town, were used to calculate the Newmark displacements, and all the evaluated displacements indicated that landslides were very likely. The results show that the slopes, susceptible to earthquakes in the Beichuan county town, were easily triggered under such strong ground-motion intensity and developed into large-scale catastrophic events.展开更多
The temporal and spatial distributions of all the 259 M≥6 earthquakes of eastern Chinese mainland (λ≥108° E) and its adjacent area and all the 153 M≥7 earthquakes of western Chinese mainland (λ<108°E...The temporal and spatial distributions of all the 259 M≥6 earthquakes of eastern Chinese mainland (λ≥108° E) and its adjacent area and all the 153 M≥7 earthquakes of western Chinese mainland (λ<108°E) and its adjacent area up to 1991 were analyzed systematically.These earthquakes are called as strong earthquakes and those of the east before and after 1600,and those of the west before and after 1900, are called respectively as former ones and latter ones.Most of these events were divided into 45 sets of which the each relatively concentrated in both time and space and took the form of group.In the grouping form,the probability of occurrence of a strong earthquake higher than the average appeared simultaneously in time and space.The grouping occurrences of the strong earthquakes of Chinese mainland has been determined as a fundamental feature of the seismicity.展开更多
It has become seismologist's common view to attach importance to the study of the characteristics about the relationship among the space distribution of precursory anomalous stations, active structure, deep rock ...It has become seismologist's common view to attach importance to the study of the characteristics about the relationship among the space distribution of precursory anomalous stations, active structure, deep rock character, and different kinds of earthquakes. In this paper, the information characteristics of ground fluid precursors are analyzed with a few examples of earthquakes. The result shows that information characteristics of ground fluid precursors mainly demonstrate, temporally stage and acceleration pattern, specially, swarm and concurrence feature. It is a key scientific problem, we propose, to give deep study on the stage and concurrence pattern for realizing the seismogenic process as well as making relatively correct prediction to the potential earthquake focus and the occurrence time.展开更多
In order to unify the time and the space attributes into temporal-spatial distance, the temporal-spatial proportional coefficient fTS is proposed in this paper. In accordance with the new distance concept, the tempora...In order to unify the time and the space attributes into temporal-spatial distance, the temporal-spatial proportional coefficient fTS is proposed in this paper. In accordance with the new distance concept, the temporal-spatial correlativity within temporal doublets of strong earthquakes in North China and its vicinity since AD 1500 has been analyzed. The computation results indicate that doublets of strong earthquake can be divided into two groups when fTS is endowed with 10 km/a in the new distance formula. The temporal-spatial distance between two points of doublet generally cannot exceed 140 km when two strong quakes in doublet have some causative relation. And those doublets with temporal-spatial distance exceeding 280 km are probably independent seismic events in doublets. This character can be the reference to the migration law summarization and trend prediction.展开更多
Based on analyzing space inhomogeneous image of strong earthquake activity, the image of source rupture and the mechanical property of the source fault in Sichuan-Yunnan region, the relations among the strong earthqua...Based on analyzing space inhomogeneous image of strong earthquake activity, the image of source rupture and the mechanical property of the source fault in Sichuan-Yunnan region, the relations among the strong earthquake activity, active fault, modern movement status of active blocks and structural background of the deep media have been discussed, and the characteristics of strong earthquake activity and possible mechanism have been also discussed.展开更多
In this paper, the roles of low velocity and high conductivity body inside the crust in the process of strong earth quake preparation are approached by using theoretical analysis method based on the comprehensive rese...In this paper, the roles of low velocity and high conductivity body inside the crust in the process of strong earth quake preparation are approached by using theoretical analysis method based on the comprehensive researches on the fine structure of strong seismic source in the North China. The following results are obtained. The low-velocity and high-conductivity body plays the promoting role for the action of deep-seated structure in the medium stage of earthquake preparation, except that its existence is advantageous to the stress concentrating in the overlying brittle layer during the process of earthquake preparation. And it plays the triggering role for the occurrence of strong earthquake in the later stage of earthquake preparation.展开更多
基金National major basic-theory planning project Mechanism and Prediction of Strong Earthquake (95130105) and the Key Project from China Seismological Bureau (95040803).
文摘Deterministic, probabilistic and composite-grading methods are used to get the possible locations of strong earth-quakes in the future in Norwest Beijing and its vicinity based on the quantitative data and their accuracy about active tectonics in the research area and by ordering, some questions in the results are also discussed. It shows that the most dangerous fault segments for strong earthquakes in the future include: segments B and A of the southern boundary fault of the Yangyuan basin, the southern boundary fault of the Xuanhua basin, the east segment of the southern Huaian fault and the east segment of the northern YanggaoTianzhen fault. The most dangerous area is YangyuanShenjing basin, the second one is TianzhenHuaianXuanhua basin and the third dangerous areas are WanquanZhangjiakou and northeast of Yuxian to southwest of Fanshan.
基金National Natural Science Foundation of China (4007401340134010)Chinese Joint Seismological Science Foundation (042002) and the project during the Tenth Five-year Plan.
文摘Based on the stochastic AMR model, this paper constructs man-made earthquake catalogues to investigate the property of parameter estimation of the model. Then the stochastic AMR model is applied to the study of several strong earthquakes in China and New Zealand. Akaikes AIC criterion is used to discriminate whether an accelerating mode of earthquake activity precedes those events or not. Finally, regional accelerating seismic activity and possible prediction approach for future strong earthquakes are discussed.
文摘The M6.2 earthquake in Jishishan,Gansu Province,on December 18,2023,caused extraordinary earthquake disasters.It was located in the northern part of the north−south seismic zone,which is a key area for earthquake monitoring in China.The newly built dense strong motion stations in this area provide unprecedented conditions for high-precision earthquake relocation,especially the earthquake focal depth.This paper uses the newly built strong motion and traditional broadband seismic networks to relocate the source locations of the M3.0 and above aftershocks and to invert their focal mechanisms.The horizontal error of earthquake location is estimated to be 0.5−1 km,and the vertical error is 1−2 km.The focal depth range of aftershocks is 9.6−14.6 km,distributed in a 12-km-long strip with SSE direction.Aftershocks in the south are more concentrated horizontally and vertically,while aftershocks in the north are more scattered.The focal mechanisms of the main shock and aftershocks are relatively consistent,and the P-axis orientation is consistent with the regional strain direction.There is a seismic blank area of M3.0 and above,about 3−5 km between the main shock and aftershocks.It is suggested that the energy released by the main shock rupture is concentrated in this area.Based on the earthquake location and focal mechanism of the main shock,it is inferred that the Northern Lajishan fault zone is the seismogenic structure of the main shock,and the main shock did not occur on the main fault,but on a secondary fault.The initial rupture depth and centroid depth of the main shock were 12.8 and 14.0 km,respectively.The source rupture depth may not be the main reason for the severe earthquake disaster.
基金NSFC Under Grant No. 90715038MOST of China Under Grant No. 2006BAC13B02
文摘The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal.
文摘The deep structure background of earth medium for strong earthquakes ccurrence in Yunnan area is discussed inthis paper, by using the results on the study of the velocity structure, elect fieal conductivity stricture, geothermalstructure in the crust and upper mantle in Yunnan area. The results show that the occurrence of strong earthquakes in Yunnan region is obviously related to the deep medium and tectonic environment such as the existenceof the high velocity zone in the upper crust, the low velocity zone or high electrical conductivity layer in themiddle crust, local uplift in the upper mantle, high geothermal activity and deep and large fault, etc. The large earthquakes could not take place at anywhere, they often occur at some regions which have a certainbackground in the deep medium structure. The activity of the earthquakes with magnitude of 5 or less is quite random,the occurrence of them have not the obvious background of the deep medium strUcture.
基金supported by the projects from the Ministry of Science and Technology of China (No.2009BK55B00)China Earthquake Administration (CEA) (No. 200808026)Institute of Engineering Mechanics of CEA (No. 0618001)
文摘During the great Wenchuan earthquake, about 460 permanent free-field stations in National Strong Motion Observation Network System (NSMONS) of China captured the main shock acceleration records. These records can be applied to site effect analyses, and then the site classification of those permanent stations can be carried out firstly, which will served as the fundamental information for further research. In this paper, the site of near-fault stations is classified by horizontal-to-vertical spectral ratio (HVSR) method according to the site class description of Japan earthquake resistant design code and response spectral shapes (RSS) method following the site class description of the 1997 Uniform Building Code (UBC) provisions. Then based on the detailed borehole data of those free-field stations, the equivalent shear wave velocity and overburden thickness are calculated and the site classifications are given by Chinese code for seismic design of buildings. Furthermore, for the stations having successful microtremor test data, the site dominant periods are computed to verify the results of site classification. Finally, combined with all the above results, the recommended site classes of near-fault permanent free-field stations are given.
文摘In this paper, based on the results of tomographic image of Tangshan and Xingtai areas, the relations between thecharacteristics of the two strong earthquake sequences and their three-dimensional velocity structures are studied.The research results indicate that:① Mosaic distribution of low-velocity bodies and high-velocity bodies, especially the existence of high-velocity bodies with large size in crust are the common basis of development of thetwo earthquake sequences. ② Scale, depth, and heterogeneity of high-velocity and low-velocity bodies are theimportant factors to effect the characteristic of earthquake sequences. ③ The depth of the high-velocity body inTangshan area is less than that in Xingtai area, which is the principal reason why the dominant focal depth and thebiggest focal depth of Tangshan earthquake sequence are less than Xingtai's. ④ The depth of the high-velocitybodies in Ninghe area is more than that in Tangshan-Luanxian area, which lead to the biggest magnitude and epicentral intensity are lower. These results could be helpful for predicting the main shock of strong swarm-typeearthquakes and later strong aftershocks.
基金supported by Basic Science and Research Fund for Chinese Commonweal Institutes under grant No. 2008B07the National Natural Science Foundation of China under grant No. 90715042+1 种基金Special Research Project of Earth-quake Engineering under grant No. 200808008National Science and Technology Support Plan under grant No. 2006BAC13B02
文摘Based on Gutenberg-Richter's relation,Bath's law,Omori's law and Well's relation of rupture scale,this paper forecasts the temporal decay,total number,possible area and greatest magnitude of strong aftershocks(greater than or equal to M6.0) of the MS8.0 Wenchuan earthquake by using the magnitude and statistical parameters of earthquakes in California area of USA.The number of strong aftershocks,the parameters of Gutenberg-Richter's relation and the modified form of Omori's law are validated based on the relocation data of aftershock sequence of the MS8.0 Wenchuan earthquake.Moreover,the spatio-temporal characteristics and wave energy release of the strong aftershocks(M≥6.0) are analyzed.The result shows that strong aftershocks may occur at the end of local drop and sharp drop on the wave energy release curve.
基金supported by the Science Foundation of Institute of Engineering Mechanics, China Earthquake Administration (CEA) under Grant No. 2014B06the National Natural Science Foundation of China Nos. 51308515 and 51278473
文摘The Ludian County of Yunnan Province in southwestern China was struck by an Ms6.5 earthquake on August 3, 2014, which was another destructive event following the Ms8.0 Wenchuan earthquake in 2008, Ms7.1 Yushu earthquake in 2010, and Ms7.0 Lushan earthquake in 2013. National Strong-Motion Observation Network System of China collected 74 strong motion recordings, which the maximum peak ground acceleration recorded by the 053LLT station in Longtoushan Town was 949 cm/s2 in E-W component. The observed PGAs and spectral ordinates were compared with ground-motion prediction equation in China and the NGA-West2 developed by Pacific Earthquake Engineering Researcher Center. This earthquake is considered as the first case for testing applicability of NGA-West2 in China. Results indicate that the observed PGAs and the 5 % damped pseudo-response spectral accelerations are significantly lower than the pre- dicted ones. The field survey around some typical strong motion stations verified that the earthquake damage was consistent with the official isoseismal by China Earthquake Administration.
文摘Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the location results of MS>=3.0 earthquakes of Jiashi swarm obtained by using this method with that by the traditional absolute method, the result obtained by using the master event method shows more reasonable and more consistent with that from the focal mechanism solutions. After relocation, we can see, the epicenters of M>=5.0 earthquakes show an echelon-type alignment along NNW-SSE direction, and all earthquakes concentrate nearly in a volume region about 30 km (N-S) × 15 km (E-W) × 15 km (U-D). Earthquake focal depths are mainly in the range of 15-28 km.
基金supported by the National Natural Science Foundation under Grant 41090290
文摘The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic haz- ard, we simulated the strong ground motions from a rep- resentative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408-1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337-353, 2006), Zhang et al. (Geophys J Int 190(1):358-378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy con- centrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the moun- tain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.
基金Chinese Joint Seismological Science Foundation.Contribution! No. 2000A005Institute of Crustal Dynamics, China Seismological
文摘From the results of researches of active faults in resent years, a correlation analysis between segments of the faults according to surface ruptures in nine historical strong earthquakes occurring in downfaulted system and active structures around Ordos block is conducted in paper. The result shows that there is a good correlation between them, except few individual data that have more uncertain parameters. It shows that intensity and segments of surface ruptures in these strong earthquakes are intrinsically related with the active structures. These strong earthquakes produced stable and unstable rupture boundaries of characteristic-earthquake type and successive occurrence of strong earthquakes on the different boundary faults in the same tectonic unit.
文摘Based on the latest achievement about activities of geological structure, a 3-D finite-element model containing four layers of upper crust, lower crust (two layers) and upper mantle is established in the paper. By repeated tests and revisions, the boundary conditions of the model are determined. And then the background stress field, the stress field caused by fault creep and the stress field triggered by strong earthquake in Sichuan-Yunnan region, as well as their dynamic variations are calculated. The results indicate that the latter earthquake often occurs in the area with positive Coulomb rupture stress change associated with the former one, the former earthquake has a triggering effect on the latter one to a certain extent, and strong earthquake often occur in groups under the background of high stress, which is of great significance for distinguishing seismic anomalies, as well as for improving the level of earthquake prediction.
基金supported by Science Foundation of Institute of Engineering Mechanics,CEA under Grant No.2013C03National Natural Science Fund Nos.51308515 and 51278473Nonprofit Industry Research Project of CEA under Grant No.201208014
文摘The Ms7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the Ms8.0 Wenchuan earthquake in 2008 and Ms7.1 Yushu earth- quake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Obser- vation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as -1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3-1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.
基金supported by the National Science and Technology Supporting Item of China (No. 2012BAK15B06)the project from Institute of Crustal Dynamics, China Earthquake Administration (No. ZDJ2010-28)
文摘The county town of Beichuan county, China, experienced catastrophic destruction due to landslides induce by the 2008 Wenchuan earthquake. In consideration of the special location of the county town, this paper selected the landslides induced in the town as representative of large-scale near-rupture landslides, and quantitatively analyzed why the landslide damage was so destructive in the town by using strong motion data obtained from the Wenchuan earthquake in the Longmenshan area. Three methods were employed to estimate the landslide damage using strong motion data. (1) Peak ground accelerations (PGAs) on the hanging wall were used to evaluate the PGAs on the landslide sites in the town. The evaluated average PGAs were all greater than I g, indicating that the ground motion intensity was very strong during the earthquake. (2) Acceleration time histories, from another station with similar geological conditions to the town, were used to evaluate the critical acceleration changing range, and the estimated values showed the geological conditions were very susceptible to earthquakes. (3) Acceleration time histories, from two stations on the hanging and foot walls of the rupture, and near the town, were used to calculate the Newmark displacements, and all the evaluated displacements indicated that landslides were very likely. The results show that the slopes, susceptible to earthquakes in the Beichuan county town, were easily triggered under such strong ground-motion intensity and developed into large-scale catastrophic events.
文摘The temporal and spatial distributions of all the 259 M≥6 earthquakes of eastern Chinese mainland (λ≥108° E) and its adjacent area and all the 153 M≥7 earthquakes of western Chinese mainland (λ<108°E) and its adjacent area up to 1991 were analyzed systematically.These earthquakes are called as strong earthquakes and those of the east before and after 1600,and those of the west before and after 1900, are called respectively as former ones and latter ones.Most of these events were divided into 45 sets of which the each relatively concentrated in both time and space and took the form of group.In the grouping form,the probability of occurrence of a strong earthquake higher than the average appeared simultaneously in time and space.The grouping occurrences of the strong earthquakes of Chinese mainland has been determined as a fundamental feature of the seismicity.
文摘It has become seismologist's common view to attach importance to the study of the characteristics about the relationship among the space distribution of precursory anomalous stations, active structure, deep rock character, and different kinds of earthquakes. In this paper, the information characteristics of ground fluid precursors are analyzed with a few examples of earthquakes. The result shows that information characteristics of ground fluid precursors mainly demonstrate, temporally stage and acceleration pattern, specially, swarm and concurrence feature. It is a key scientific problem, we propose, to give deep study on the stage and concurrence pattern for realizing the seismogenic process as well as making relatively correct prediction to the potential earthquake focus and the occurrence time.
基金Innovation Foundation of Chinese Academy of Sciences
文摘In order to unify the time and the space attributes into temporal-spatial distance, the temporal-spatial proportional coefficient fTS is proposed in this paper. In accordance with the new distance concept, the temporal-spatial correlativity within temporal doublets of strong earthquakes in North China and its vicinity since AD 1500 has been analyzed. The computation results indicate that doublets of strong earthquake can be divided into two groups when fTS is endowed with 10 km/a in the new distance formula. The temporal-spatial distance between two points of doublet generally cannot exceed 140 km when two strong quakes in doublet have some causative relation. And those doublets with temporal-spatial distance exceeding 280 km are probably independent seismic events in doublets. This character can be the reference to the migration law summarization and trend prediction.
基金"Strong Earthquake Mechanism and Forecast in China’s Continent(95-13-05-05)and the Natural Science Funds of Yunnan Province(97D015G),China.
文摘Based on analyzing space inhomogeneous image of strong earthquake activity, the image of source rupture and the mechanical property of the source fault in Sichuan-Yunnan region, the relations among the strong earthquake activity, active fault, modern movement status of active blocks and structural background of the deep media have been discussed, and the characteristics of strong earthquake activity and possible mechanism have been also discussed.
文摘In this paper, the roles of low velocity and high conductivity body inside the crust in the process of strong earth quake preparation are approached by using theoretical analysis method based on the comprehensive researches on the fine structure of strong seismic source in the North China. The following results are obtained. The low-velocity and high-conductivity body plays the promoting role for the action of deep-seated structure in the medium stage of earthquake preparation, except that its existence is advantageous to the stress concentrating in the overlying brittle layer during the process of earthquake preparation. And it plays the triggering role for the occurrence of strong earthquake in the later stage of earthquake preparation.