It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. T...It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li2O to CaO based fluxes was recommended.展开更多
It is found that strong basic oxides including Li 2O, Na 2O, K 2O and BaO, which are used to replace a part of CaO in CaO based fluxes, can lower the melting point and the viscosity and enhance the dephosphorizing...It is found that strong basic oxides including Li 2O, Na 2O, K 2O and BaO, which are used to replace a part of CaO in CaO based fluxes, can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li 2O to CaO based fluxes was recommended.展开更多
In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a...In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.展开更多
The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H...The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.展开更多
Oxygen reduction reaction(ORR)is an electrochemical reaction in which dissolved oxygen in an electrolyte is reduced toOH−/H2Owhen receiving electrons.This reaction plays a crucial role in shaping the efficiency of bot...Oxygen reduction reaction(ORR)is an electrochemical reaction in which dissolved oxygen in an electrolyte is reduced toOH−/H2Owhen receiving electrons.This reaction plays a crucial role in shaping the efficiency of both metal-air batteries and fuel cells,and precious metals are the dominant catalysts carrying out the ORR in their cathodes.However,how to manipulate the electronic structure of precious metals as active sites to further promote ORR performance and maximize the utilization rate is still under development.Metal oxide serves as suitable and promising support that can strongly interact with precious metals for both activity and durability enhancement.Herein,we present recent research updates on strong precious metal-metal oxide interaction(SPMMOI)utilized in ORR.We start by introducing the background of ORR,the issues to be solved,and its practical applications followed by a thorough discussion of the reaction mechanism and comprehensive evaluation protocols of performance.We then provide a complete understanding of theworking principle of SPMMOI and highlight the related advances.Finally,we summarize the merits of the precious metal-metal oxide systemand propose the research direction aswell as some urgent problems to be addressed in the future.展开更多
A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as ...A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.展开更多
Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.W...Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.While the enhancement and expansion of PSⅡ functions through genetic engineering would be beneficial for driving challenging chemical reactions,this has proven difficult due to its enormous complexity.Here,we report a genetically encoded,27 kDa photosensitizer protein(PSP3)that recapitulates the initial photoinduced key properties of PSⅡ.Through the genetic incorporation of benzophenone-alanine(BpA)into a fluorescent protein coupled with femtosecond transient absorption measurement,we show that photoinduced electron transfer from residue Tyr203 to the PSP3 chromophore occurs very rapidly(∼1 ps),which is comparable with that of the first electron transfer step in PSII.Since PSP3 can be overexpressed in high yield in Escherichia coli and genetically engineered easily,it might facilitate challenging oxidation and reduction reactions in vitro and in vivo.展开更多
基金Item Sponsored by National Natural Science Foundation of China(59774015)
文摘It is found that strong basic oxides including Li2O,Na2O,K2O and BaO,which are used to replace a part of CaO in CaO-based fluxes,can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li2O to CaO based fluxes was recommended.
基金the support of Wong K C Education Foundation , Hong Kong
文摘It is found that strong basic oxides including Li 2O, Na 2O, K 2O and BaO, which are used to replace a part of CaO in CaO based fluxes, can lower the melting point and the viscosity and enhance the dephosphorizing ability. The mechanism was analysed and the addition of Li 2O to CaO based fluxes was recommended.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674207)
文摘In order to learn more about the physical phenomena occurring in cloud cavitation,the nonlinear dynamics of a spherical cluster of cavitation bubbles and cavitation bubbles in cluster in an acoustic field excited by a square pressure wave are numerically investigated by considering viscosity,surface tension,and the weak compressibility of the liquid.The theoretical prediction of the yield of oxidants produced inside bubbles during the strong collapse stage of cavitation bubbles is also investigated.The effects of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster on bubble temperature and the quantity of oxidants produced inside bubbles are analyzed.The results show that the change of acoustic frequency,acoustic pressure amplitude,and the number of bubbles in cluster have an effect not only on temperature and the quantity of oxidants inside the bubble,but also on the degradation types of pollutants,which provides a guidance in improving the sonochemical degradation of organic pollutants.
基金Supported by the National Natural Science Foundation of China(21277008,20777005)the Natural Science Foundation of Beijing(8082008)
文摘The Fe-modi fied sepiolite-supported Mn–Cu mixed oxide(Cux Mny/Fe-Sep) catalysts were prepared using the co-precipitation method.These materials were characterized by means of the XRD,N_2 adsorption–desorption,XPS,H_2-TPR,and O_2-TPD techniques,and their catalytic activities for CO and ethyl acetate oxidation were evaluated.The results show that catalytic activities of the Cux Mny/Fe-Sep samples were higher than those of the Cu1/Fe-Sep and Mn2/Fe-Sep samples,and the Mn/Cu molar ratio had a distinct in fluence on catalytic activity of the sample.Among the Cux Mny/Fe-Sep and Cu1Mn2/Sep samples,Cu1Mn2/Fe-Sep performed the best for CO and ethyl acetate oxidation,showing the highest reaction rate and the lowest T50 and T90 of 4.4×10^(-6) mmol·g-1·s-1,110,and 140 °C for CO oxidation,and 1.9×10^(-6) mmol·g-1·s-1,170,and210 °C for ethyl acetate oxidation,respectively.Moreover,the Cu1Mn2/Fe-Sep sample possessed the best lowtemperature reducibility and the lowest temperature of oxygen desorption as well as the highest surface Mn^(4+)/Mn^(3+) and Cu^(2+)/CuO atomic ratios.It is concluded that factors,such as the strong interaction between the Cu or Mn and the Fe-Sep support,good low-temperature reducibility,and good mobility of chemisorbed oxygen species,might account for the excellent catalytic activity of Cu1Mn2/Fe-Sep.
文摘Oxygen reduction reaction(ORR)is an electrochemical reaction in which dissolved oxygen in an electrolyte is reduced toOH−/H2Owhen receiving electrons.This reaction plays a crucial role in shaping the efficiency of both metal-air batteries and fuel cells,and precious metals are the dominant catalysts carrying out the ORR in their cathodes.However,how to manipulate the electronic structure of precious metals as active sites to further promote ORR performance and maximize the utilization rate is still under development.Metal oxide serves as suitable and promising support that can strongly interact with precious metals for both activity and durability enhancement.Herein,we present recent research updates on strong precious metal-metal oxide interaction(SPMMOI)utilized in ORR.We start by introducing the background of ORR,the issues to be solved,and its practical applications followed by a thorough discussion of the reaction mechanism and comprehensive evaluation protocols of performance.We then provide a complete understanding of theworking principle of SPMMOI and highlight the related advances.Finally,we summarize the merits of the precious metal-metal oxide systemand propose the research direction aswell as some urgent problems to be addressed in the future.
基金supported by the Doctoral Program of Xi'an Shiyou University(134010155)Shaanxi Provincial College Students'Inno vative Entrepreneurial Training Program(No.2016107051360 and 201610705046)
文摘A series of CeO2-Co3O4 mixed oxide catalysts with different Co/(Co+Ce) atomic ratios were synthesized by citric acid sol-gel method and used for catalytic oxidation of formaldehyde(HCHO). Many techniques such as Brumauer-Emmett-Teller(BET), X-ray diffraction(XRD), scanning electron microscopy(FE-SEM), temperature programmed reduction(H_2-TPR), temperature-programmed desorption(O_2-TPD) and X-ray photoelectron spectroscopy(XPS) were used to characterize catalysts. The results of catalytic performance tests showed that the catalyst CeO_2-Co_3O_4 with Co/(Co+Ce) ratio of 0.95 exhibited the best performance, and the temperature of complete oxidation of HCHO was 80 oC. The analytical results indicated that the addition of CeO_2 enhanced the specific surface area of Co_3O_4 and the fine dispersion of both of them. Moreover, the strong interaction between CeO_2 and Co_3O_4 resulted in the unique redox properties, which enhanced the available surface active oxygen and led to high valence state of cobalt oxide species. All those effects played crucial roles in the excellent performance of CeO_2-Co_3O_4 for the HCHO oxidation.
基金financially supported by the National Key Research and Development Program of China under award nos.2016YFA0501502 and 2017YFA0503704the National Science Foundation of China under award nos.91940306,21837005,21890743,21961142014,21750003,91527302,and 21827803+2 种基金pilot project of CAS under award no.XDB37040203the Sanming Project of Medicine in Shenzhen(no.Y8KF351001)the Youth Innovation Promotion Association CAS.
文摘Photosystem Ⅱ(PSⅡ)is a large membrane protein(∼700 kDa)complex,harboring P680+,the strongest oxidant known in biological systems,which is responsible for driving tyrosine oxidation and ultimately O_(2) generation.While the enhancement and expansion of PSⅡ functions through genetic engineering would be beneficial for driving challenging chemical reactions,this has proven difficult due to its enormous complexity.Here,we report a genetically encoded,27 kDa photosensitizer protein(PSP3)that recapitulates the initial photoinduced key properties of PSⅡ.Through the genetic incorporation of benzophenone-alanine(BpA)into a fluorescent protein coupled with femtosecond transient absorption measurement,we show that photoinduced electron transfer from residue Tyr203 to the PSP3 chromophore occurs very rapidly(∼1 ps),which is comparable with that of the first electron transfer step in PSII.Since PSP3 can be overexpressed in high yield in Escherichia coli and genetically engineered easily,it might facilitate challenging oxidation and reduction reactions in vitro and in vivo.