In the field of geophysics,although the first-order Rytov approximation is widely used,the higher-order approximation is seldom discussed.From both theo-retical analysis and numerical tests,the accumulated phase error...In the field of geophysics,although the first-order Rytov approximation is widely used,the higher-order approximation is seldom discussed.From both theo-retical analysis and numerical tests,the accumulated phase error introduced in the first-order Rytov approximation cannot be neglected in the presence of strong velocity perturbation.In this paper,we are focused on improving the phase accuracy of forward scattered wavefield,especially for the large-scale and strong velocity pertur-bation case.We develop an equivalent source method which can update the imaginary part of the complex phase iteratively,and the higher-order scattered wavefield can be approximated by multiplying the incident wavefield by the exponent of the imaginary part of the complex phase.Although the convergence of the proposed method has not been proved mathematically,numerical examples demonstrate that our method can produce an improved accuracy for traveltime(phase)prediction,even for strong perturbation media.However,due to the neglect of the real part of the complex phase,the amplitude change of the scattered wavefield cannot be recovered.Furthermore,in the presence of multi-arrivals phenomenon,the equivalent scattering source should be handled carefully due to the multi-directions of the wavefield.Further investigations should be done to improve the applicability of the proposed method.展开更多
We extend our previous work of a classical over-barrier ionization (COBI) model to calculate the single ionization cross sections of noble gases ranging from He to Xe at strong perturbative energies. The calculation...We extend our previous work of a classical over-barrier ionization (COBI) model to calculate the single ionization cross sections of noble gases ranging from He to Xe at strong perturbative energies. The calculation results are in good agreement with extensive experimental data. The scaling law of single ion-atom impact ionization cross sections of noble gases on projectile charge q and energy E, also on target ionization energy I is drawn from the model.展开更多
基金supported by National Natural Science Foundation of China(41604091,41704111,41774126)the great and special project(2016ZX05024-001,2016ZX05006-002).
文摘In the field of geophysics,although the first-order Rytov approximation is widely used,the higher-order approximation is seldom discussed.From both theo-retical analysis and numerical tests,the accumulated phase error introduced in the first-order Rytov approximation cannot be neglected in the presence of strong velocity perturbation.In this paper,we are focused on improving the phase accuracy of forward scattered wavefield,especially for the large-scale and strong velocity pertur-bation case.We develop an equivalent source method which can update the imaginary part of the complex phase iteratively,and the higher-order scattered wavefield can be approximated by multiplying the incident wavefield by the exponent of the imaginary part of the complex phase.Although the convergence of the proposed method has not been proved mathematically,numerical examples demonstrate that our method can produce an improved accuracy for traveltime(phase)prediction,even for strong perturbation media.However,due to the neglect of the real part of the complex phase,the amplitude change of the scattered wavefield cannot be recovered.Furthermore,in the presence of multi-arrivals phenomenon,the equivalent scattering source should be handled carefully due to the multi-directions of the wavefield.Further investigations should be done to improve the applicability of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11174116,and 11175075)
文摘We extend our previous work of a classical over-barrier ionization (COBI) model to calculate the single ionization cross sections of noble gases ranging from He to Xe at strong perturbative energies. The calculation results are in good agreement with extensive experimental data. The scaling law of single ion-atom impact ionization cross sections of noble gases on projectile charge q and energy E, also on target ionization energy I is drawn from the model.