期刊文献+
共找到442篇文章
< 1 2 23 >
每页显示 20 50 100
Strong Tracking Particle Filter Based on the Chi-Square Test for Indoor Positioning 被引量:2
1
作者 Lingwu Qian Jianxiang Li +3 位作者 Qi Tang Mengfei Liu Bingjie Yuan Guoli Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1441-1455,共15页
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped... In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment. 展开更多
关键词 NLOS strong tracking filter particle filter CST pedestrian dead reckoning indoor positioning
下载PDF
A strong tracking nonlinear robust filter for eye tracking 被引量:9
2
作者 Zutao ZHANG Jiashu ZHANG 《控制理论与应用(英文版)》 EI 2010年第4期503-508,共6页
Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interfe... Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions. 展开更多
关键词 Eye tracking strong tracking unscented Kalman filter (ST-UKF) Unscented Kalman filter (UKF) strong tracking filtering (STF)
下载PDF
Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking 被引量:2
3
作者 张祖涛 张家树 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期324-332,共9页
The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and mu... The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n+ 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. 展开更多
关键词 unscented Kalman filter strong tracking filtering sampling strong tracking nonlinearunscented Kalman filter eye tracking
下载PDF
Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning 被引量:3
4
作者 XIAO Kun FANG Shao-ji PANG Yong-jie 《Journal of Marine Science and Application》 2007年第2期19-24,共6页
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance.... To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective. 展开更多
关键词 dead reckoning underwater vehicle strong tracking kalman filter measurement noise
下载PDF
A Strong Tracking Filtering Approach for Health Estimation of Marine Gas Turbine Engine 被引量:1
5
作者 Qingcai Yang Shuying Li Yunpeng Cao 《Journal of Marine Science and Application》 CSCD 2019年第4期542-553,共12页
Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estima... Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estimate them only based on the available measurement parameters.Kalman filter-based approaches are the most commonly used estimation approaches;how-ever,the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty,and their ability to track the mutation condition is influenced by historical data.Therefore,in this paper,an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF)approach is proposed to estimate the gas turbine health parameters.The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches.The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF)and the unscented Kalman filter(UKF).The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero. 展开更多
关键词 Gas turbine Health parameter estimation ExtendedKalman filter UnscentedKalman filter strongtrackingKalman filter Analytical linearization
下载PDF
Fuzzy Adaptive Strong Tracking Cubature Kalman Filter
6
作者 徐晓苏 邹海军 +2 位作者 张涛 刘义亭 宫淑萍 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期731-736,共6页
To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is intro... To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF). 展开更多
关键词 cubature Kalman filter(CKF) strong tracking filter(STF) fuzzy logic adaptive controller(FLAC) softening factor matrix
下载PDF
基于强跟踪滤波器的水中高频振荡放电参数分析
7
作者 康忠健 高崇 +1 位作者 邵在康 傅雪原 《电工技术学报》 EI CSCD 北大核心 2024年第13期4090-4099,共10页
为探明水中放电高频振荡阶段参数及其变化特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和强跟踪滤波器的时变参数辨识方法。通过该方法分解水中放电实验平台采集的电压、电流信号得到不同频率特征的信号分量,对最适应原... 为探明水中放电高频振荡阶段参数及其变化特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和强跟踪滤波器的时变参数辨识方法。通过该方法分解水中放电实验平台采集的电压、电流信号得到不同频率特征的信号分量,对最适应原始波形的信号分量开展Hilbert变换并求得相应的瞬时幅值、频率,进而得到所需的电阻和电感。实验数据离散度分析结果表明,放电进程中参数变化具有随机性,故利用强跟踪滤波器进一步对实验数据进行辨识处理,可有效地降低随机放电造成的离散性,并获得具备普适性的电阻值和电感值。偏离度分析结果表明,辨识电阻与测量数据除在气泡崩塌阶段随机性过大外,前期偏离度集中在23.26%以下,降低了偏离度处于80%~110%内数据点的干扰,电感偏离度集中在2.35%以下。该方法能够有效地应用于水中高频振荡放电过程的时变参数处理研究中。 展开更多
关键词 水中脉冲放电 高频振荡 参数辨识 自适应噪声完备集合经验模态分解(CEEMDAN) 强跟踪滤波器
下载PDF
基于粒子群优化的无人车双惯性测量单元姿态融合方法
8
作者 马帅旗 贺海育 +1 位作者 周雷金 王文妍 《汽车技术》 CSCD 北大核心 2024年第8期38-46,共9页
为提高无人车系统中微机电惯性测量单元(MEMS IMU)的姿态角解算精度,提出了一种基于粒子群优化(PSO)算法和自适应强跟踪无迹卡尔曼滤波(STAUKF)算法的数据融合方法。首先,对两种不同精度的IMU模块通过STAUKF算法进行滤波,然后,利用构造... 为提高无人车系统中微机电惯性测量单元(MEMS IMU)的姿态角解算精度,提出了一种基于粒子群优化(PSO)算法和自适应强跟踪无迹卡尔曼滤波(STAUKF)算法的数据融合方法。首先,对两种不同精度的IMU模块通过STAUKF算法进行滤波,然后,利用构造的两类误差函数,引入PSO算法对两种IMU的后验估计进行融合,最后,在搭建的无人车平台上进行测试。试验结果表明,相较于两种单一IMU解算数据,所提出的方法解算获得的横滚轴与俯仰轴角度均方根误差分别减小了56.67%、58.94%,相较于冗余式双IMU系统直接加权平均所解算的数据分减小了36.55%、52.15%,解算精度更高、鲁棒性更强。 展开更多
关键词 冗余传感器 数据融合 粒子群优化 强跟踪 卡尔曼滤波
下载PDF
基于IMM-JPDA-ISTUKF的车载毫米波雷达多目标跟踪算法 被引量:1
9
作者 蒋凯 周建江 +1 位作者 吕瑞广 李晓航 《现代雷达》 CSCD 北大核心 2024年第8期47-54,共8页
为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟... 为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟踪UKF(ISTUKF)的IMM-JPDA-ISTUKF算法。通过模拟道路场景搭建的仿真环境对算法性能进行了验证,且为证明该算法在实际道路工况下跟踪精度的提升,还进行了雷达道路测试,通过雷达在道路上获取的车辆数据进一步验证了该算法的有效性。结果表明,该算法在目标车辆运动状态发生变化时的距离跟踪精度和速度跟踪精度方面均得到了提高。 展开更多
关键词 多目标跟踪 无迹卡尔曼滤波 强跟踪滤波 交互多模型 车载毫米波雷达
下载PDF
基于ASTUKF的分布式农业车辆路面参数辨识方法 被引量:1
10
作者 孙晨阳 周俊 赖国梁 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期401-414,共14页
针对分布式驱动农业车辆在路面参数辨识过程中,因路面环境变化出现的状态模型误差和时变噪声,导致辨识结果发散的问题,提出了基于自适应强跟踪无迹卡尔曼滤波(Adaptive strong tracking unscented Kalman filter,ASTUKF)的辨识方法。与... 针对分布式驱动农业车辆在路面参数辨识过程中,因路面环境变化出现的状态模型误差和时变噪声,导致辨识结果发散的问题,提出了基于自适应强跟踪无迹卡尔曼滤波(Adaptive strong tracking unscented Kalman filter,ASTUKF)的辨识方法。与传统内燃机农业车辆相比,分布式驱动可以直接获取驱动轮的状态信息,结合含有峰值附着系数和极限滑转率的μ-s曲线模型,建立了无迹卡尔曼滤波(Unscented Kalman filter,UKF)辨识算法的状态方程和量测方程。同时,将强跟踪滤波(Strong tracking filter,STF)和自适应滤波(Adaptive filter,AF)引入辨识算法,用以提高对多变环境的识别精度和鲁棒性,并采用奇异值分解(Singular value decomposition,SVD)解决了迭代过程中出现的非正定矩阵的问题。仿真试验结果表明,在突变噪声环境工况下,ASTUKF辨识结果可以快速收敛至目标值附近,且不受突变噪声的影响,各驱动轮峰值附着系数估计结果的平均绝对误差(Mean absolute error,MAE)分别为0.0144、0.0267、0.0144、0.0267,极限滑转率估计结果的MAE分别为0.0025、0.0028、0.0025、0.0028。实车试验表明,在已耕地和未耕地的试验路面上,ASTUKF辨识结果的均值95%置信区间能够匹配测量值,整车的附着系数辨识结果为0.4061(未耕地)、0.3991(已耕地),极限滑转率辨识结果为0.1484(未耕地)、0.3600(已耕地),可为分布式电动农业车辆作业参数感知提供理论参考。 展开更多
关键词 农业车辆 分布式驱动 路面参数辨识 自适应强跟踪无迹卡尔曼滤波
下载PDF
强跟踪容积卡尔曼滤波在空空导弹制导中的应用
11
作者 梁津鑫 唐奇 +1 位作者 崔颢 张公平 《航空兵器》 CSCD 北大核心 2024年第5期82-87,共6页
针对传统滤波算法在处理目标复杂机动时非线性逼近能力不足、跟踪精度下降等问题,提出一种强跟踪容积卡尔曼滤波(STCKF)方法。首先,根据战斗机规避空空导弹的机动特征,建立了蛇形机动和桶滚机动两种目标运动模型;其次,引入强跟踪滤波(S... 针对传统滤波算法在处理目标复杂机动时非线性逼近能力不足、跟踪精度下降等问题,提出一种强跟踪容积卡尔曼滤波(STCKF)方法。首先,根据战斗机规避空空导弹的机动特征,建立了蛇形机动和桶滚机动两种目标运动模型;其次,引入强跟踪滤波(STF)以增强容积卡尔曼滤波(CKF)对系统状态突变等不确定因素的能力;然后,将STCKF应用于导弹末制导目标运动参数估计中,并通过与CKF、无迹卡尔曼滤波(UKF)和粒子滤波(PF)的对比仿真分析验证了该方法的有效性。仿真结果表明,STCKF具有较强的鲁棒性和系统自适应能力,尤其在目标机动突变时其跟踪误差相比CKF减小约10%,能够满足空空导弹末制导高精度和快速响应要求。 展开更多
关键词 容积卡尔曼滤波 强跟踪滤波 非线性滤波 目标跟踪 空空导弹 制导
下载PDF
基于强跟踪的移动机器人CQKF-SLAM方法
12
作者 张凤 孙健 袁帅 《计算机工程与设计》 北大核心 2024年第6期1872-1879,共8页
针对容积正交卡尔曼滤波(CQKF)在同时定位与地图构建(SLAM)中系统状态驱动模型与观测数据存在突变,以及协方差分解引起系统不稳定,导致移动机器人定位精度降低的问题,提出一种基于多重渐消因子强跟踪的SVDCQKF-SLAM方法。采用奇异值分解... 针对容积正交卡尔曼滤波(CQKF)在同时定位与地图构建(SLAM)中系统状态驱动模型与观测数据存在突变,以及协方差分解引起系统不稳定,导致移动机器人定位精度降低的问题,提出一种基于多重渐消因子强跟踪的SVDCQKF-SLAM方法。采用奇异值分解(SVD)代替CQKF算法中的乔列斯基分解,抑制状态误差协方差矩阵负定性;引入多重渐消因子强跟踪滤波器调节状态预测协方差矩阵。通过仿真实验,将所提SLAM方法与其它SLAM方法进行对比,其结果表明,该方法能够有效降低SLAM过程中的定位误差,对移动机器人同时定位与地图构建有一定参考价值。 展开更多
关键词 强跟踪滤波算法 多重渐消因子 奇异值分解 容积正交卡尔曼滤波 同时定位与地图构建 协方差矩阵 移动机器人
下载PDF
基于自适应强跟踪Kalman滤波的GNSS跟踪环路设计
13
作者 盛开宇 陈熙源 +2 位作者 汤新华 闫晣 高宁 《传感技术学报》 CAS CSCD 北大核心 2024年第1期35-41,共7页
为提高GNSS接收机跟踪环路在复杂环境下的跟踪性能,提出一种基于自适应强跟踪Kalman滤波(ASTKF)的跟踪环路,在传统跟踪环路的基础上,以鉴相器输出为观测量进行自适应强跟踪Kalman滤波,滤波结果用于计算导航滤波器的观测量,同时将伪码频... 为提高GNSS接收机跟踪环路在复杂环境下的跟踪性能,提出一种基于自适应强跟踪Kalman滤波(ASTKF)的跟踪环路,在传统跟踪环路的基础上,以鉴相器输出为观测量进行自适应强跟踪Kalman滤波,滤波结果用于计算导航滤波器的观测量,同时将伪码频率和载波多普勒频率反馈到码NCO和载波NCO,在ASTKF中使用基于卡方分布的渐消因子计算方法,提升跟踪环路鲁棒性。半物理仿真实验表明,相比于基于Kalman滤波的跟踪环路和基于强跟踪Kalman滤波(STKF)的跟踪环路,所提出方法在水平方向上的位置误差和速度误差减小20%以上,有效提高了卫星导航接收机的定位性能。 展开更多
关键词 卫星导航 自适应强跟踪Kalman滤波 渐消因子 卡方分布 软件接收机
下载PDF
高超目标强跟踪CKF自适应交互多模型跟踪算法 被引量:1
14
作者 罗亚伦 廖育荣 +1 位作者 李兆铭 倪淑燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2272-2283,共12页
高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分... 高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分析,在时间更新和量测更新的协方差矩阵中引入强跟踪算法的渐消因子,在线实时调整滤波增益,减小模型不匹配导致的滤波精度下降;在IMM的模型集中选择Singer模型、“当前”统计模型和Jerk模型,并针对模型扩维导致CKF算法中无法Cholesky分解的问题引入奇异值分解(SVD)算法;对IMM算法中马尔可夫矩阵提出自适应算法,通过模型似然函数值对转移概率进行自适应修正,增强匹配模型所占比例。仿真结果表明:所提算法跟踪收敛速度提高了约37.5%,跟踪精度提高了16.51%。 展开更多
关键词 高超目标 容积卡尔曼滤波 强跟踪滤波 渐消因子 自适应交互多模型
下载PDF
基于强跟踪UKF的自适应PHD-SLAM算法
15
作者 邹晗 吴孙勇 +1 位作者 薛秋条 李明 《信号处理》 CSCD 北大核心 2024年第10期1875-1883,共9页
传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题... 传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题,进而影响机器人位姿和地图特征点的估计精度。针对这一问题,本文提出了一种基于强跟踪和无迹卡尔曼滤波(Unscented Kalman filter,UKF),并融合最新观测数据来产生重要性密度的PHD-SLAM算法(Strong Tracking UKF PHD-SLAM,SUPHD-SLAM)。所提算法在重要性采样阶段将上一时刻的机器人位姿和地图特征点增广为联合向量,为了避免传统PHD-SLAM中扩展卡尔曼滤波(Extended Kalman filter,EKF)引入的线性化误差,利用UKF对粒子进行预测,并通过引入强跟踪滤波中的渐消因子修正UKF预测后不精确的位姿状态协方差,保持量测新息正交,从而抑制不确定噪声和不精确初始系统参数设置对状态估计的影响。随后通过UKF更新每个位姿粒子,引导粒子向高似然区域移动,以获得更准确的位姿的重要性密度,从而避免粒子退化。从重要性密度中采样新的位姿粒子,针对每个位姿粒子使用基于UKF的PHD滤波计算地图特征点,并用单簇(Single-Cluster,SC)策略更新每个位姿粒子的权重。最后,提取权重最大的位姿粒子及其对应的地图作为状态估计。仿真实验表明,SUPHD-SLAM相较于PHD-SLAM 1.0和PHD-SLAM 2.0,保证计算效率的同时,能够有效的提高机器人位姿和地图特征点的估计精度。 展开更多
关键词 无迹卡尔曼滤波 强跟踪 机器人位姿 地图
下载PDF
Novel method for identifying the stages of discharge underwater based on impedance change characteristic
16
作者 高崇 康忠健 +3 位作者 龚大建 张扬 王玉芳 孙一鸣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期133-145,共13页
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel... It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761. 展开更多
关键词 discharge underwater discharge stage identification impedance characteristics strong tracking filter
下载PDF
改进Sage-Husa算法在SINS/GPS组合导航中的应用
17
作者 文胜 刘彩云 +1 位作者 栾添添 孙明晓 《哈尔滨理工大学学报》 CAS 北大核心 2024年第3期37-44,共8页
针对在组合导航系统中应用Sage-Husa自适应滤波算法存在的滤波精度低和可靠性差等问题,提出一种改进的Sage-Husa自适应滤波算法。首先在Sage-Husa自适应滤波算法基础上,通过指数渐渐消记忆加权估计方法来估计噪声统计特性,提高算法的自... 针对在组合导航系统中应用Sage-Husa自适应滤波算法存在的滤波精度低和可靠性差等问题,提出一种改进的Sage-Husa自适应滤波算法。首先在Sage-Husa自适应滤波算法基础上,通过指数渐渐消记忆加权估计方法来估计噪声统计特性,提高算法的自适应能力,后结合强跟踪滤波引入渐消因子在线修正预测均方误差矩阵,使改进后的算法具有应对系统误差干扰等不确定因素的能力。仿真结果表明,改进后Sage-Husa算法具有更高的自适应能力以及在出现模型误差和粗差干扰时能够有效抑制滤波发散,保持良好的滤波性能,应用在组合导航系统中具有更强的稳定性和定位精度。 展开更多
关键词 组合导航 Sage-Husa自适应滤波 渐消因子 强跟踪滤波 噪声估计 模型误差
下载PDF
机械臂外力的时延强跟踪Kalman估计与自学习控制
18
作者 淡乾川 崔凤坤 《机械设计与制造》 北大核心 2024年第4期308-313,共6页
为了提高机械臂与环境交互过程中的接触力估计精度和关节控制精度,提出了基于时延强跟踪Kalman滤波的接触力估计方法和基于熵-自学习控制网络的关节角位置控制方法。建立了机械臂系统的关节驱动模型和动力学模型;基于时延估计理论,建立... 为了提高机械臂与环境交互过程中的接触力估计精度和关节控制精度,提出了基于时延强跟踪Kalman滤波的接触力估计方法和基于熵-自学习控制网络的关节角位置控制方法。建立了机械臂系统的关节驱动模型和动力学模型;基于时延估计理论,建立了4自由度机械臂系统的时延模型;在Kalman滤波中引入了渐消因子,使估计残差强行正交,从而提出了基于时延强跟踪Kalman的接触力估计方法。以接触力误差和关节位置误差为输入,以关节力矩为输出构建了自学习控制网络,并提出使用熵聚类确定网络结构和参数,从而设计了熵-自学习控制网络。经仿真验证,基于时延强跟踪Kalman的估计误差区间分布小于标准Kalman和文献[12]柔顺控制,且分布密度在0误差处极高;熵-自学习控制网络对期望轨迹的绝对跟踪误差和收敛时间远小于自学习控制网络和变阻抗阻尼控制。仿真结果验证了本文接触力估计方法和角位置控制方法的优越性。 展开更多
关键词 接触力估计 关节控制 强跟踪Kalman滤波 熵-自学习控制 机械臂系统
下载PDF
基于IST-RSCKF-MB的雷达多目标跟踪算法
19
作者 李艳玲 方遒 屠亚杰 《厦门理工学院学报》 2024年第1期9-16,共8页
针对多目标跟踪(MTT)算法存在较大的计算量问题,将改进渐消因子的强跟踪(IST)引入快速平方根容积卡尔曼滤波(RSCKF)中,并联合新息自相关矩阵和Murty算法确定最佳假设的多伯努利(MB)算法,提出改进强跟踪平方根容积卡尔曼多伯努利(IST-RSC... 针对多目标跟踪(MTT)算法存在较大的计算量问题,将改进渐消因子的强跟踪(IST)引入快速平方根容积卡尔曼滤波(RSCKF)中,并联合新息自相关矩阵和Murty算法确定最佳假设的多伯努利(MB)算法,提出改进强跟踪平方根容积卡尔曼多伯努利(IST-RSCKF-MB)的雷达多目标跟踪算法。仿真结果显示,所提出算法的运算效率和滤波精度比平方根容积卡尔曼多伯努算法、改进强跟踪平方根容积卡尔曼多伯努利混合算法、扩展卡尔曼多伯努利算法和无迹卡尔曼多伯努利算法均有不同程度提高,误差率分别减少0.36%、4.71%、14.75%和0.17%,适用于嵌入式目标跟踪算法实现。 展开更多
关键词 雷达 多目标跟踪 平方根容积卡尔曼滤波(RSCKF) 强跟踪滤波(STF) 多伯努利算法(MB)
下载PDF
自适应CT模型的强跟踪CKF算法
20
作者 张彪 孙超军 +1 位作者 徐嘉辉 范婉华 《舰船电子工程》 2024年第2期104-108,共5页
自适应协同转弯(CT)模型可以用于对转弯机动目标进行跟踪。由于转弯率变化,状态方程为非线性,同时雷达测量数据以极坐标系形式给出,在直角坐标系下建立的观测方程具有很强的非线性。论文利用强跟踪容积卡尔曼滤波(CKF)来实现非线性滤波... 自适应协同转弯(CT)模型可以用于对转弯机动目标进行跟踪。由于转弯率变化,状态方程为非线性,同时雷达测量数据以极坐标系形式给出,在直角坐标系下建立的观测方程具有很强的非线性。论文利用强跟踪容积卡尔曼滤波(CKF)来实现非线性滤波处理,并将其与标准的容积卡尔曼滤波进行比较。通过对变转弯率机动目标跟踪的仿真,表明该算法能稳定跟踪变转弯率目标,且跟踪精度高。 展开更多
关键词 自适应协同转弯 强跟踪容积卡尔曼滤波 非线性滤波 机动目标跟踪
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部