期刊文献+
共找到450篇文章
< 1 2 23 >
每页显示 20 50 100
Strong Tracking Particle Filter Based on the Chi-Square Test for Indoor Positioning 被引量:2
1
作者 Lingwu Qian Jianxiang Li +3 位作者 Qi Tang Mengfei Liu Bingjie Yuan Guoli Ji 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1441-1455,共15页
In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped... In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment. 展开更多
关键词 NLOS strong tracking filter particle filter CST pedestrian dead reckoning indoor positioning
下载PDF
A Strong Tracking Filtering Approach for Health Estimation of Marine Gas Turbine Engine 被引量:1
2
作者 Qingcai Yang Shuying Li Yunpeng Cao 《Journal of Marine Science and Application》 CSCD 2019年第4期542-553,共12页
Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estima... Monitoring and evaluating the health parameters of marine gas turbine engine help in developing predictive control techniques and maintenance schedules.Because the health parameters are unmeasurable,researchers estimate them only based on the available measurement parameters.Kalman filter-based approaches are the most commonly used estimation approaches;how-ever,the conventional Kalman filter-based approaches have a poor robustness to the model uncertainty,and their ability to track the mutation condition is influenced by historical data.Therefore,in this paper,an improved Kalman filter-based algorithm called the strong tracking extended Kalman filter(STEKF)approach is proposed to estimate the gas turbine health parameters.The analytical expressions of Jacobian matrixes are deduced by non-equilibrium point analytical linearization to address the problem of the conventional approaches.The proposed approach was used to estimate the health parameters of a two-shaft marine gas turbine engine in the simulation environment and was compared with the extended Kalman filter(EKF)and the unscented Kalman filter(UKF).The results show that the STEKF approach not only has a computation cost similar to that of the EKF approach but also outperforms the EKF approach when the health parameters change abruptly and the noise mean value is not zero. 展开更多
关键词 Gas turbine Health parameter estimation ExtendedKalman filter UnscentedKalman filter strongtrackingKalman filter Analytical linearization
下载PDF
A strong tracking nonlinear robust filter for eye tracking 被引量:9
3
作者 Zutao ZHANG Jiashu ZHANG 《控制理论与应用(英文版)》 EI 2010年第4期503-508,共6页
Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interfe... Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions. 展开更多
关键词 Eye tracking strong tracking unscented Kalman filter (ST-UKF) Unscented Kalman filter (UKF) strong tracking filtering stf
下载PDF
Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking 被引量:2
4
作者 张祖涛 张家树 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第10期324-332,共9页
The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and mu... The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n+ 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. 展开更多
关键词 unscented Kalman filter strong tracking filtering sampling strong tracking nonlinearunscented Kalman filter eye tracking
下载PDF
Strong tracking adaptive Kalman filters for underwater vehicle dead reckoning 被引量:3
5
作者 XIAO Kun FANG Shao-ji PANG Yong-jie 《Journal of Marine Science and Application》 2007年第2期19-24,共6页
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance.... To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective. 展开更多
关键词 dead reckoning underwater vehicle strong tracking kalman filter measurement noise
下载PDF
Fuzzy Adaptive Strong Tracking Cubature Kalman Filter
6
作者 徐晓苏 邹海军 +2 位作者 张涛 刘义亭 宫淑萍 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期731-736,共6页
To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is intro... To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF). 展开更多
关键词 cubature Kalman filter(CKF) strong tracking filter(stf) fuzzy logic adaptive controller(FLAC) softening factor matrix
下载PDF
基于粒子群优化的无人车双惯性测量单元姿态融合方法
7
作者 马帅旗 贺海育 +1 位作者 周雷金 王文妍 《汽车技术》 CSCD 北大核心 2024年第8期38-46,共9页
为提高无人车系统中微机电惯性测量单元(MEMS IMU)的姿态角解算精度,提出了一种基于粒子群优化(PSO)算法和自适应强跟踪无迹卡尔曼滤波(STAUKF)算法的数据融合方法。首先,对两种不同精度的IMU模块通过STAUKF算法进行滤波,然后,利用构造... 为提高无人车系统中微机电惯性测量单元(MEMS IMU)的姿态角解算精度,提出了一种基于粒子群优化(PSO)算法和自适应强跟踪无迹卡尔曼滤波(STAUKF)算法的数据融合方法。首先,对两种不同精度的IMU模块通过STAUKF算法进行滤波,然后,利用构造的两类误差函数,引入PSO算法对两种IMU的后验估计进行融合,最后,在搭建的无人车平台上进行测试。试验结果表明,相较于两种单一IMU解算数据,所提出的方法解算获得的横滚轴与俯仰轴角度均方根误差分别减小了56.67%、58.94%,相较于冗余式双IMU系统直接加权平均所解算的数据分减小了36.55%、52.15%,解算精度更高、鲁棒性更强。 展开更多
关键词 冗余传感器 数据融合 粒子群优化 强跟踪 卡尔曼滤波
下载PDF
基于强跟踪滤波器的水中高频振荡放电参数分析
8
作者 康忠健 高崇 +1 位作者 邵在康 傅雪原 《电工技术学报》 EI CSCD 北大核心 2024年第13期4090-4099,共10页
为探明水中放电高频振荡阶段参数及其变化特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和强跟踪滤波器的时变参数辨识方法。通过该方法分解水中放电实验平台采集的电压、电流信号得到不同频率特征的信号分量,对最适应原... 为探明水中放电高频振荡阶段参数及其变化特性,提出一种基于自适应噪声完备集合经验模态分解(CEEMDAN)和强跟踪滤波器的时变参数辨识方法。通过该方法分解水中放电实验平台采集的电压、电流信号得到不同频率特征的信号分量,对最适应原始波形的信号分量开展Hilbert变换并求得相应的瞬时幅值、频率,进而得到所需的电阻和电感。实验数据离散度分析结果表明,放电进程中参数变化具有随机性,故利用强跟踪滤波器进一步对实验数据进行辨识处理,可有效地降低随机放电造成的离散性,并获得具备普适性的电阻值和电感值。偏离度分析结果表明,辨识电阻与测量数据除在气泡崩塌阶段随机性过大外,前期偏离度集中在23.26%以下,降低了偏离度处于80%~110%内数据点的干扰,电感偏离度集中在2.35%以下。该方法能够有效地应用于水中高频振荡放电过程的时变参数处理研究中。 展开更多
关键词 水中脉冲放电 高频振荡 参数辨识 自适应噪声完备集合经验模态分解(CEEMDAN) 强跟踪滤波器
下载PDF
基于ASTUKF的分布式农业车辆路面参数辨识方法 被引量:1
9
作者 孙晨阳 周俊 赖国梁 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期401-414,共14页
针对分布式驱动农业车辆在路面参数辨识过程中,因路面环境变化出现的状态模型误差和时变噪声,导致辨识结果发散的问题,提出了基于自适应强跟踪无迹卡尔曼滤波(Adaptive strong tracking unscented Kalman filter,ASTUKF)的辨识方法。与... 针对分布式驱动农业车辆在路面参数辨识过程中,因路面环境变化出现的状态模型误差和时变噪声,导致辨识结果发散的问题,提出了基于自适应强跟踪无迹卡尔曼滤波(Adaptive strong tracking unscented Kalman filter,ASTUKF)的辨识方法。与传统内燃机农业车辆相比,分布式驱动可以直接获取驱动轮的状态信息,结合含有峰值附着系数和极限滑转率的μ-s曲线模型,建立了无迹卡尔曼滤波(Unscented Kalman filter,UKF)辨识算法的状态方程和量测方程。同时,将强跟踪滤波(Strong tracking filter,STF)和自适应滤波(Adaptive filter,AF)引入辨识算法,用以提高对多变环境的识别精度和鲁棒性,并采用奇异值分解(Singular value decomposition,SVD)解决了迭代过程中出现的非正定矩阵的问题。仿真试验结果表明,在突变噪声环境工况下,ASTUKF辨识结果可以快速收敛至目标值附近,且不受突变噪声的影响,各驱动轮峰值附着系数估计结果的平均绝对误差(Mean absolute error,MAE)分别为0.0144、0.0267、0.0144、0.0267,极限滑转率估计结果的MAE分别为0.0025、0.0028、0.0025、0.0028。实车试验表明,在已耕地和未耕地的试验路面上,ASTUKF辨识结果的均值95%置信区间能够匹配测量值,整车的附着系数辨识结果为0.4061(未耕地)、0.3991(已耕地),极限滑转率辨识结果为0.1484(未耕地)、0.3600(已耕地),可为分布式电动农业车辆作业参数感知提供理论参考。 展开更多
关键词 农业车辆 分布式驱动 路面参数辨识 自适应强跟踪无迹卡尔曼滤波
下载PDF
基于STF的“当前”统计模型及自适应跟踪算法 被引量:46
10
作者 范小军 刘锋 +1 位作者 秦勇 张军 《电子学报》 EI CAS CSCD 北大核心 2006年第6期981-984,共4页
在“当前”统计模型(CS)的基础上,提出了一种新的机动目标自适应跟踪算法STF-CS.该算法通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,增强了系统对突发机动的自适应跟踪能力,同时保留了“当前”统计模型跟踪算法对一般机动... 在“当前”统计模型(CS)的基础上,提出了一种新的机动目标自适应跟踪算法STF-CS.该算法通过引入强跟踪滤波器(STF)的渐消因子,实时调节滤波器增益,增强了系统对突发机动的自适应跟踪能力,同时保留了“当前”统计模型跟踪算法对一般机动目标跟踪精度高的特点.仿真结果表明,在跟踪一般机动目标时,其误差和“当前”统计模型算法相当;在跟踪突发机动目标时,本文算法的误差明显小于“当前”统计模型及自适应算法. 展开更多
关键词 机动目标跟踪 当前统计模型 强跟踪滤波器 卡尔曼滤波
下载PDF
基于IMM-JPDA-ISTUKF的车载毫米波雷达多目标跟踪算法
11
作者 蒋凯 周建江 +1 位作者 吕瑞广 李晓航 《现代雷达》 CSCD 北大核心 2024年第8期47-54,共8页
为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟... 为提高车载毫米波雷达多目标跟踪精度指标,提升道路车辆行驶安全性,文中在交互多模型无迹卡尔曼滤波(IMM-UKF)和联合概率数据关联(JPDA)融合的算法基础上,针对车辆运动状态突变处UKF鲁棒性差、滤波精度低的问题,提出了一种基于改进强跟踪UKF(ISTUKF)的IMM-JPDA-ISTUKF算法。通过模拟道路场景搭建的仿真环境对算法性能进行了验证,且为证明该算法在实际道路工况下跟踪精度的提升,还进行了雷达道路测试,通过雷达在道路上获取的车辆数据进一步验证了该算法的有效性。结果表明,该算法在目标车辆运动状态发生变化时的距离跟踪精度和速度跟踪精度方面均得到了提高。 展开更多
关键词 多目标跟踪 无迹卡尔曼滤波 强跟踪滤波 交互多模型 车载毫米波雷达
下载PDF
基于STF&LM算法的串联锂离子电池组不一致性辨识与状态估计 被引量:12
12
作者 葛云龙 陈自强 《中国电机工程学报》 EI CSCD 北大核心 2018年第14期4271-4280,共10页
电池组中单体间存在的不一致性是电池状态估计问题中的一大难点。针对串联锂离子电池组,提出了一种基于强跟踪滤波器(strong tracking filter,STF)与LevenbergMarquardt(LM)算法相结合的电池组不一致性辨识与状态估计的新方法。首... 电池组中单体间存在的不一致性是电池状态估计问题中的一大难点。针对串联锂离子电池组,提出了一种基于强跟踪滤波器(strong tracking filter,STF)与LevenbergMarquardt(LM)算法相结合的电池组不一致性辨识与状态估计的新方法。首先针对"参考单体"给出了一阶等效电路模型与开路电压–荷电状态(state of charge,SOC)特性关系曲线,通过STF算法得到其状态估计与参数估计;其次建立不同单体的"电压相似函数",并引入LM算法对SOC、极化电压、欧姆内阻3种不一致因素进行辨识;最后对2组5个LiFePO4单体串联的电池组在不同的工况下进行了实验验证。结果表明,所提方法对各单体的状态与内阻估计误差在合理的范围内,对电池组不一致性辨识与状态估计具有良好的效果。 展开更多
关键词 锂离子电池组 不一致性 状态估计 强跟踪滤波器 LM算法
下载PDF
基于自适应强跟踪Kalman滤波的GNSS跟踪环路设计
13
作者 盛开宇 陈熙源 +2 位作者 汤新华 闫晣 高宁 《传感技术学报》 CAS CSCD 北大核心 2024年第1期35-41,共7页
为提高GNSS接收机跟踪环路在复杂环境下的跟踪性能,提出一种基于自适应强跟踪Kalman滤波(ASTKF)的跟踪环路,在传统跟踪环路的基础上,以鉴相器输出为观测量进行自适应强跟踪Kalman滤波,滤波结果用于计算导航滤波器的观测量,同时将伪码频... 为提高GNSS接收机跟踪环路在复杂环境下的跟踪性能,提出一种基于自适应强跟踪Kalman滤波(ASTKF)的跟踪环路,在传统跟踪环路的基础上,以鉴相器输出为观测量进行自适应强跟踪Kalman滤波,滤波结果用于计算导航滤波器的观测量,同时将伪码频率和载波多普勒频率反馈到码NCO和载波NCO,在ASTKF中使用基于卡方分布的渐消因子计算方法,提升跟踪环路鲁棒性。半物理仿真实验表明,相比于基于Kalman滤波的跟踪环路和基于强跟踪Kalman滤波(STKF)的跟踪环路,所提出方法在水平方向上的位置误差和速度误差减小20%以上,有效提高了卫星导航接收机的定位性能。 展开更多
关键词 卫星导航 自适应强跟踪Kalman滤波 渐消因子 卡方分布 软件接收机
下载PDF
基于强跟踪UKF的自适应PHD-SLAM算法
14
作者 邹晗 吴孙勇 +1 位作者 薛秋条 李明 《信号处理》 CSCD 北大核心 2024年第10期1875-1883,共9页
传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题... 传统概率假设密度同时定位与建图(Probability Hypothesis Density-Simultaneous Localization and Mapping,PHD-SLAM)方法缺乏在线自适应调整能力,容易受到不确定噪声、初始系统参数选择以及线性化近似误差的影响,从而导致粒子退化问题,进而影响机器人位姿和地图特征点的估计精度。针对这一问题,本文提出了一种基于强跟踪和无迹卡尔曼滤波(Unscented Kalman filter,UKF),并融合最新观测数据来产生重要性密度的PHD-SLAM算法(Strong Tracking UKF PHD-SLAM,SUPHD-SLAM)。所提算法在重要性采样阶段将上一时刻的机器人位姿和地图特征点增广为联合向量,为了避免传统PHD-SLAM中扩展卡尔曼滤波(Extended Kalman filter,EKF)引入的线性化误差,利用UKF对粒子进行预测,并通过引入强跟踪滤波中的渐消因子修正UKF预测后不精确的位姿状态协方差,保持量测新息正交,从而抑制不确定噪声和不精确初始系统参数设置对状态估计的影响。随后通过UKF更新每个位姿粒子,引导粒子向高似然区域移动,以获得更准确的位姿的重要性密度,从而避免粒子退化。从重要性密度中采样新的位姿粒子,针对每个位姿粒子使用基于UKF的PHD滤波计算地图特征点,并用单簇(Single-Cluster,SC)策略更新每个位姿粒子的权重。最后,提取权重最大的位姿粒子及其对应的地图作为状态估计。仿真实验表明,SUPHD-SLAM相较于PHD-SLAM 1.0和PHD-SLAM 2.0,保证计算效率的同时,能够有效的提高机器人位姿和地图特征点的估计精度。 展开更多
关键词 无迹卡尔曼滤波 强跟踪 机器人位姿 地图
下载PDF
一种实现机动目标跟踪的STF动态模型PDA算法 被引量:5
15
作者 徐毓 杨瑞娟 周焰 《电子学报》 EI CAS CSCD 北大核心 2003年第7期981-984,共4页
本文提出了一种基于强跟踪滤波器 (STF)的模型结构动态调整的概率数据关联算法 (STF PDA) .该算法提高了概率数据关联 (PDA)算法的性能 .在跟踪目标 ,尤其是在跟踪机动目标的性能上 ,理论分析表明该算法比基于KF或EKF的PDA方法优越 .且... 本文提出了一种基于强跟踪滤波器 (STF)的模型结构动态调整的概率数据关联算法 (STF PDA) .该算法提高了概率数据关联 (PDA)算法的性能 .在跟踪目标 ,尤其是在跟踪机动目标的性能上 ,理论分析表明该算法比基于KF或EKF的PDA方法优越 .且与基于KF和EKF的PDA算法进行了实验结果比较 ,结果表明 。 展开更多
关键词 目标跟踪 强跟踪滤波器 概率数据关联
下载PDF
基于强跟踪的移动机器人CQKF-SLAM方法
16
作者 张凤 孙健 袁帅 《计算机工程与设计》 北大核心 2024年第6期1872-1879,共8页
针对容积正交卡尔曼滤波(CQKF)在同时定位与地图构建(SLAM)中系统状态驱动模型与观测数据存在突变,以及协方差分解引起系统不稳定,导致移动机器人定位精度降低的问题,提出一种基于多重渐消因子强跟踪的SVDCQKF-SLAM方法。采用奇异值分解... 针对容积正交卡尔曼滤波(CQKF)在同时定位与地图构建(SLAM)中系统状态驱动模型与观测数据存在突变,以及协方差分解引起系统不稳定,导致移动机器人定位精度降低的问题,提出一种基于多重渐消因子强跟踪的SVDCQKF-SLAM方法。采用奇异值分解(SVD)代替CQKF算法中的乔列斯基分解,抑制状态误差协方差矩阵负定性;引入多重渐消因子强跟踪滤波器调节状态预测协方差矩阵。通过仿真实验,将所提SLAM方法与其它SLAM方法进行对比,其结果表明,该方法能够有效降低SLAM过程中的定位误差,对移动机器人同时定位与地图构建有一定参考价值。 展开更多
关键词 强跟踪滤波算法 多重渐消因子 奇异值分解 容积正交卡尔曼滤波 同时定位与地图构建 协方差矩阵 移动机器人
下载PDF
基于STF和加权改进的群目标跟踪算法 被引量:3
17
作者 李振兴 刘进忙 +1 位作者 白东颖 郭相科 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第8期1102-1108,共7页
为了进一步提高群目标交互多模型跟踪算法的估计性能,提出一种改进的群跟踪算法.首先,通过采用模型转换概率的自适应算法,优化模型与目标运动模式的实时匹配.并通过引入强跟踪滤波(STF,Strong Tracking Filter)中的渐消因子,提高机动阶... 为了进一步提高群目标交互多模型跟踪算法的估计性能,提出一种改进的群跟踪算法.首先,通过采用模型转换概率的自适应算法,优化模型与目标运动模式的实时匹配.并通过引入强跟踪滤波(STF,Strong Tracking Filter)中的渐消因子,提高机动阶段时的群质心的状态估计精度.其次,分别利用概率加权法和标量加权法完成群质心状态和扩展状态的融合估计.最后在变分贝叶斯滤波的基础上,建立完整的跟踪算法流程.仿真实验结果表明,该方法不仅能够提高群质心状态和扩展状态的估计精度,还能有效降低机动阶段时的峰值误差. 展开更多
关键词 群目标 跟踪 强跟踪滤波 机动阶段 模型转换概率 融合估计 峰值误差
下载PDF
基于双STF-UKF算法的永磁同步电机参数联合估计 被引量:9
18
作者 林辉 吕帅帅 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期49-54,共6页
针对永磁同步电机参数辨识问题,分析了永磁同步电机的可辨识模型.将参数看成缓慢的变化状态,同时考虑系统噪声和测量噪声,提出了一种基于强跟踪滤波器的无迹卡尔曼滤波算法.该算法能够同时辨识定子电阻、直轴和交轴电感、永磁体磁链,讨... 针对永磁同步电机参数辨识问题,分析了永磁同步电机的可辨识模型.将参数看成缓慢的变化状态,同时考虑系统噪声和测量噪声,提出了一种基于强跟踪滤波器的无迹卡尔曼滤波算法.该算法能够同时辨识定子电阻、直轴和交轴电感、永磁体磁链,讨论分析了该算法的稳定性.为了减少算法的计算量,将4个参数分成2部分,采用2个STF-UKF滤波器交替运行辨识全部参数.仿真结果表明,该算法在PMSM不同的工况下能够有效地辨识电机的全部参数. 展开更多
关键词 永磁同步电机 参数辨识 强跟踪滤波器 无迹卡尔曼滤波 稳定性
下载PDF
UTSTF锂离子电池时变参数估计与故障诊断 被引量:7
19
作者 葛云龙 陈自强 郑昌文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第6期1223-1230,共8页
针对锂离子电池的参数偏差型故障诊断问题,提出基于无迹变换强跟踪滤波器(UTSTF)的电池时变参数估计与故障诊断方法.建立电池的开路电压(OCV)-荷电状态(SOC)特性曲线与一阶等效电路模型;将电池参数加入状态变量,建立状态与参数的联合状... 针对锂离子电池的参数偏差型故障诊断问题,提出基于无迹变换强跟踪滤波器(UTSTF)的电池时变参数估计与故障诊断方法.建立电池的开路电压(OCV)-荷电状态(SOC)特性曲线与一阶等效电路模型;将电池参数加入状态变量,建立状态与参数的联合状态空间方程,通过UTSTF算法得到电池参数的实时估计结果,并根据估计值设计故障诊断算法流程;以电池内部的接触型故障与扩散型故障为例,在变温环境下模拟故障发生并进行电池充放测试,得到电池参数在UTSTF与无迹卡尔曼滤波(UKF)下估计值与真实值的对比.实验结果表明,所提方法对于电池故障参数具有良好的跟踪效果、较高的估计精度与诊断可靠性. 展开更多
关键词 锂离子电池 时变参数 无迹变换强跟踪滤波器(UTstf) 故障诊断
下载PDF
基于STF的车辆ECAS传感器故障诊断研究 被引量:5
20
作者 刘雁玲 徐兴 +1 位作者 杨晓峰 杜毅 《中国科技论文》 CAS 北大核心 2016年第16期1817-1820,1825,共5页
电控空气悬架(electronically controlled air suspension,ECAS)系统的有效控制依赖于传感器实时采集的正确车身状态信号。针对电控空气悬架传感器卡死、恒偏差、恒增益3种故障,建立1种ECAS故障检测与隔离方法(fault detection and isol... 电控空气悬架(electronically controlled air suspension,ECAS)系统的有效控制依赖于传感器实时采集的正确车身状态信号。针对电控空气悬架传感器卡死、恒偏差、恒增益3种故障,建立1种ECAS故障检测与隔离方法(fault detection and isolation,FDI)。建立电控空气悬架三自由度1/4车模型以及传感器故障时空气悬架模型,设计故障检测滤波器组,结合传感器实时测量值获得空气悬架输出残差,在此基础上确定故障检测指标,计算指标数值并选取适当阈值进行比较。诊断滤波器采用强跟踪滤波器方法进行设计,选取两级决策变量构造隔离决策函数,实现对故障传感器的检测与隔离。仿真分析表明,所提出的基于STF的方法实现了ECAS传感器故障的检测与隔离,有效提高了车辆控制的可靠性与安全性。 展开更多
关键词 电控空气悬架 传感器 故障检测与隔离 强跟踪滤波器 自适应阈值
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部