First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setti...First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.展开更多
In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formula...In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.展开更多
文摘First a general model for a three-step projection method is introduced, and second it has been applied to the approximation solvability of a system of nonlinear variational inequality problems in a Hilbert space setting. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. For arbitrarily chosen initial points x0, y0, z0 ∈ K, compute sequences xn, yn, zn such thatT : K→ H is a nonlinear mapping onto K. At last three-step models are applied to some variational inequality problems.
基金the Educational Department Foundation of Tianjin of Science and Technology (No.20042120).
文摘In this paper, an optimal control problem governed by semilinear parabolic equation which involves the control variable acting on forcing term and coefficients appearing in the higher order derivative terms is formulated and analyzed. The strong variation method, due originally to Mayne et al to solve the optimal control problem of a lumped parameter system, is extended to solve an optimal control problem governed by semilinear parabolic equation, a necessary condition is obtained, the strong variation algorithm for this optimal control problem is presented, and the corresponding convergence result of the algorithm is verified.