Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh...Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.展开更多
We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calcul...We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.展开更多
Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized...Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters(DApolyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials(poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine(DA) structure(DA-PCL2k,DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering(SAXS)was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization(Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance(MR) relaxation properties with decreased interparticle spacing.展开更多
The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a clust...The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell,using the finite difference time domain(FDTD)method.By calculating the optical absorption and hence the photocurrent,it is shown that the clustering of nanoparticles significantly improves them.The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles.For comparison,first a cell with a single nanoparticle at the rear side is evaluated.Then four smaller nanoparticles are put around it to make a cluster.The photocurrents of 20.478 mA/cm2,23.186 mA/cm2,21.427 mA/cm2,and 21.243 mA/cm2 are obtained for the cells using clustering conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.These values are 13.987 mA/cm2,16.901 mA/cm2,16.507 mA/cm2,17.926 mA/cm2 for the cell with one conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.Therefore,clustering can significantly improve the photocurrents.Finally,the distribution of the electric field and the generation rate for the proposed structures are calculated.展开更多
The weakness of visible and near-infrared light penetration depth limits the application of photodynamic therapy(PDT)in deep-seated tumors.Based on the high penetrability of X-rays,X-ray-induced PDT(X-PDT)is a promisi...The weakness of visible and near-infrared light penetration depth limits the application of photodynamic therapy(PDT)in deep-seated tumors.Based on the high penetrability of X-rays,X-ray-induced PDT(X-PDT)is a promising new method for treating deep-seated tumors.However,it requires the development of suitable X-ray-induced sensitizers that could employ X-ray energy to produce reactive oxygen species(ROS)efficiently.In this study,a novel X-rayinduced sensitizer(NanoSRF)was developed through a microemulsion method,in which copper iodine cluster compound Cu_(2)I_(2)(tpp)2(2,5-dm-pz)(CIP)and rose bengal(RB)worked as scintillator and photosensitizer,respectively.CIP was synthesized by a simple mechanical grinding method,and subsequently folic acid(FA)-modified albumin was introduced to enable its alliance with RB.NanoSRF exhibited excellent dispersion stability and generated a large amount of ROS under X-ray irradiation.The results of in vitro studies demonstrated its high selectivity for FA receptor-positive cancer cells.Following systemic administration,NanoSRF accumulated in H22 tumors of xenograft-bearing mice,and Xray irradiation(5.46 Gy)induced a significant inhibition rate of 96.7%in tumor growth.This study pioneers the use of copper iodide cluster as a scintillator in X-PDT,presenting new possibilities for designing scintillators with exceptional X-ray absorption and efficient X-PDT capabilities.展开更多
Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-o...Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-organic composite, which were prepared by thermolysis of layered solid zinc-oleate complex at 260 and 300 ℃ in air, respectively. High-resolution transmission electron microscopy and selected area electron diffraction patterns indicate that aggregates are single crystals with various defects. The photoluminescence excitation spectra of both samples show two bands at 272 and 366 nm. The former may originate from electron transfer from valence band to conduction band in ZnO clusters composed of less than 200 ZnO molecules (2R〈2 nm).展开更多
In this work, we proposed a novel three-dimensional (3D) plasmonic nanostructure based on porous graphene/nickel foam (GNF) and gas-phase deposited Ag nanoparticles (NPs). Ag NPs with high density were directly deposi...In this work, we proposed a novel three-dimensional (3D) plasmonic nanostructure based on porous graphene/nickel foam (GNF) and gas-phase deposited Ag nanoparticles (NPs). Ag NPs with high density were directly deposited on the surface of 3D GNF by performing a novel cluster beam deposition approach. In comparison with traditional Ag substrate (SiO2/Ag), such hot-spots enriched 3D nanostructure showed extremely high electromag-netic field enhancement under incident light irradiation which could be used as a sensitive chemical sensor based on surface enhanced Raman scattering (SERS). The experimental results demonstrated that the proposed nanostructure showed superior SERS performance in terms of Raman signal reproducibility and sensitivity for the probe molecules. 3D full-wave simulation showed that the enhanced SERS performance in this 3D hierarchical plasmonic nanostructure was mainly obtained from the hot-spots between Ag NPs and the near-field coupling between Ag NPs and GNF sca olds. This work can provide a novel assembled SERS substrate as a SERS-based chemical sensor in practical applications.展开更多
Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the...Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the size of the Au particles.Au(III)was partly reduced during conventional oven drying,resulting in Au aggregates.In contrast,Au(III)was preserved during microwave drying owing to rapid and uniform heating,and the Au diameter was minimized to1.4nm on Al2O3.This method can be applied to several metal oxide supports having different microwave absorption efficiencies,such as MnO2,Al2O3,and TiO2.These catalysts exhibited higher catalytic activities for CO oxidation at low temperature and for selective aerobic oxidation of sulfide than those prepared by conventional methods.展开更多
Very small nickel oxide nanoparticles were prepared by a sol-gel procedure using nickel nitrate hexahydrate and ammonium hydroxide as precursors. The particles are in the range of 5 nm-11 rim. The x-ray diffraction (...Very small nickel oxide nanoparticles were prepared by a sol-gel procedure using nickel nitrate hexahydrate and ammonium hydroxide as precursors. The particles are in the range of 5 nm-11 rim. The x-ray diffraction (XRD) crystallography and high resolution transmission electron microscopy (HRTEM) were employed to characterize the samples. They were found to be polycrystalline in nature and fcc (NaCl-type) in structure, with the lattice parameter varying with annealing temperature. HRTEM pictures show that the as-prepared samples are hexagonal in shape. Positron annihilation spectroscopy was used to investigate the Doppler-broadened spectra of the samples. The S and W parameters revealed that the chemical surroundings and momentum distribution of the vacancy clusters vary with crystallite size.展开更多
A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sen...A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sensors. An enhancement on the electrocatalytic activity of the palladium nanoparticles toward H2O2 reduction was observed, which was related to the coverage of the carbon nanoparticles. With one monolayer of carbon nanoparticles, the H2O2 detection sensitivity reached the maximum, which was more than twice of that of the pure Pd nanoparticles.展开更多
The extensive application of TiO_(2)nanoparticles(NPs)highlights the importance of investigating their influence on aquatic systems.In this work,the effect of TiO_(2)NPs on heavy metals speciation was studied on a lab...The extensive application of TiO_(2)nanoparticles(NPs)highlights the importance of investigating their influence on aquatic systems.In this work,the effect of TiO_(2)NPs on heavy metals speciation was studied on a lab scale.For this goal,a series of aquaria containing water,sediment,and TiO_(2)NPs with various concentrations were set up.The study results revealed that TiO_(2)NPs caused(copper)Cu,(mercury)Hg,(titanium)Ti,and(zinc)Zn to be adsorbed by sediments in the forms of exchangeable and Fe-Mn species.According to measurements,30μg/L of TiO_(2)NPs made Cu,Hg,Ti and Zn concentration in the water column decreased from 33,1.14,20,and 32 to 4,0.58,3,and 22.3μg/L,respectively.Manganese(Mn)was also adsorbed by sediment,and in all experiments,its concentration in the water column reduced from 44 to about 20μg/L.Due to the photocatalytic capacity of TiO_(2)NPs,arsenic(As)concentration in the water column increased from 0 to 8.7μg/L with the introduction of30μg/L of TiO_(2)NPs.The sequential extraction results showed that in all experiments,concentrations of lead(Pb),nickel(Ni),and cobalt(Co)remained constant in different chemical species of sediment,which meant conservative behavior of them in presence of TiO_(2)NPs.In addition,a remarkable change was observed in water quality parameters such as ORP,TDS,TOC,BOD,NO3’and PO_(4)after the introduction of TiO_(2)NPs to aquaria.The reason behind these changes could be related to the decomposition of sediment organic content by TiO_(2)NPs.展开更多
Single-atom catalysts,featuring some of the most unique activities,selectivity,and high metal utilization,have been extensively studied over the past decade.Given their high activity,selectivity,especially towards sma...Single-atom catalysts,featuring some of the most unique activities,selectivity,and high metal utilization,have been extensively studied over the past decade.Given their high activity,selectivity,especially towards small molecules or key intermediate conversions,they can be synergized together with other active species(typically other single atoms,atomic clusters,or nanoparticles)in either tandem or parallel or both,leading to much better performance in complex catalytic processes.Although there have been reports on effectively combining the multiple components into one single catalytic entity,the combination and synergy between single atoms and other active species have not been reviewed and examined in a systematic manner.Herein,in this overview,the key synergistic interactions,binary complementary effects,and the bifunctional functions of single atoms with other active species are defined and discussed in detail.The integration functions of their marriages are in-vestigated with particular emphasis on the homogeneous and heterogeneous combinations,spatial distribution,synthetic strategies,and the thus-derived outstanding catalytic performance,together with new light shined on the catalytic mechanisms by zooming in several case studies.The dynamic nature of each of the active species and in particular their interactions in such new catalytic entities in the heterogeneous electrocatalytic processes are visited,on the basis of the in situ/operando evidence.Last,we feature the current chal-lenges and future perspectives of these integrated catalytic entities that can offer guidance for advanced catalyst design by the rational combination and synergy of binary or multiple active species.展开更多
Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized ...Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized magnetic nanoparticles (MNPs). Cationic polyelectrolyte-coated MNPs are directly deposited onto cellular membranes, producing a mesoporous semi-permeable layer and rendering cells magnetically responsive. Deposition of MNPs can be completed within minutes, under cell-friendly conditions (room temperature and physiologic media). Microscopy (TEM, SEM, AFM, and enhanced dark-field imaging) revealed the intercalation of nanoparticles into the cellular microvilli network. A detailed viability investigation was performed and suggested that MNPs do not inhibit membrane integrity, enzymatic activity, adhesion, proliferation, or cytoskeleton formation, and do not induce apoptosis in either cancer or primary cells. Finally, magnetically functionalized cells were employed to fabricate viable layered planar (two-cell layers) cell sheets and 3D multicellular spheroids.展开更多
Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to si...Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.展开更多
In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react wit...In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react with formaldehyde to form novel reducing groups(-NH-CH_(2)OH),which can in situ auto-reduce the encapsulated Pd^(2+)ions to metallic Pd clusters/nanoparticles.As no additional reductants are required,the strategy limits the aggregation and migration of Pd clusters and the formation of large Pd nanoparticles via controlling the amount of Pd^(2+)precursor.When applied as catalysts in the hydrogenation of phenol in the aqueous phase,the obtained Pd(1.5)/MIL-125-NH-CH_(2)OH catalyst with highly dispersed Pd clusters/nanoparticles with the size of around 2 nm exhibited 100%of phenol conversion and 100%of cyclohexanone selectivity at 70℃ after 5 h,as well as remarkable reusability for at least five cycles due to the large MOF surface area,the highly dispersed Pd clusters/nanoparticles and their excellent stability within the MIL-125-NH-CH_(2)OH framework.展开更多
Nanoclusters consisting of a few atoms have attracted a lot of research interests due to their exotic size-dependent properties. Here, well-ordered two-dimensional Sb cluster superlattice was fabricated on Si substrat...Nanoclusters consisting of a few atoms have attracted a lot of research interests due to their exotic size-dependent properties. Here, well-ordered two-dimensional Sb cluster superlattice was fabricated on Si substrate by a two-step method and characterized by scanning tunneling microscopy. High resolution scanning tunneling microscope measurements revealed the fine structures of the Sb clusters, which consist of several Sb atoms ranging from 2 to 7. Furthermore, the electronic structure of the nanocluster displays the quantized energy-level which is due to the single-electron tunneling effects. We believe that the fabrication of Sb cluster superlattice broadens the species of the cluster superlattice and provides a promising candidate to further explore the novel physical and chemical properties of the semimetal nanocluster.展开更多
基金financially supported by the National Natural Science Foundation of China(22279036)the Innovation Talent Recruitment Base of New Energy Chemistry Device(B21003)the Fundamental Research Funds for the Central Universities(no.2019kfyRCPY100).
文摘Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined.
基金Project supported by the Natural Science Foundation of Guangxi Province of China (Grant No.2021GXNSFDA196001)the National Natural Science Foundation of China (Grant Nos.12174076,12074084,and 12204117)+1 种基金Guangxi Science and Technology Project (Grant Nos.AD22080042 and AB21220052)Open Project of State Key Laboratory of Surface Physics in Fudan University (Grant No.KF2022_15)。
文摘We demonstrate that,in a simple linearly-polarized plane wave,the optical pulling forces on nanoparticle clusters with gain can be induced by the Fano-like resonance.The numerical results based on the full-wave calculation show that the optical pulling forces can be attributed to the recoil forces for the nanoparticle clusters composed of dipolar nanoparticles with three different configurations.Interestingly,the recoil forces giving rise to optical pulling forces are exactly dominated by the coupling term between the electric and magnetic dipoles excited in the nanoparticle clusters,while other higherorder terms have a negligible contribution.In addition,the optical pulling force can be tailored by modulating the Fano-like resonance via either the particle size or the gain magnitude,offering an alternative freedom degree for optical manipulations of particle clusters.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB933903)the National Key Technology R&D Program of China(Grant No.2012BAI23B08)the National Natural Science Foundation of China(Grant Nos.20974065,51173117,and 50830107)
文摘Polymer-mediated self-assembly of superparamagnetic iron oxide(SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters(DApolyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials(poly(ε-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine(DA) structure(DA-PCL2k,DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering(SAXS)was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization(Ms) and T2 relaxation of the aggregation, and lead to increased magnetic resonance(MR) relaxation properties with decreased interparticle spacing.
文摘The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell.Here we simulate spherical,conical,pyramidal,and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell,using the finite difference time domain(FDTD)method.By calculating the optical absorption and hence the photocurrent,it is shown that the clustering of nanoparticles significantly improves them.The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles.For comparison,first a cell with a single nanoparticle at the rear side is evaluated.Then four smaller nanoparticles are put around it to make a cluster.The photocurrents of 20.478 mA/cm2,23.186 mA/cm2,21.427 mA/cm2,and 21.243 mA/cm2 are obtained for the cells using clustering conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.These values are 13.987 mA/cm2,16.901 mA/cm2,16.507 mA/cm2,17.926 mA/cm2 for the cell with one conical,spherical,pyramidal,cylindrical NPs at the backside,respectively.Therefore,clustering can significantly improve the photocurrents.Finally,the distribution of the electric field and the generation rate for the proposed structures are calculated.
基金supported by the National Natural Science Foundation of China(22178065,22078066 and U1705282).
文摘The weakness of visible and near-infrared light penetration depth limits the application of photodynamic therapy(PDT)in deep-seated tumors.Based on the high penetrability of X-rays,X-ray-induced PDT(X-PDT)is a promising new method for treating deep-seated tumors.However,it requires the development of suitable X-ray-induced sensitizers that could employ X-ray energy to produce reactive oxygen species(ROS)efficiently.In this study,a novel X-rayinduced sensitizer(NanoSRF)was developed through a microemulsion method,in which copper iodine cluster compound Cu_(2)I_(2)(tpp)2(2,5-dm-pz)(CIP)and rose bengal(RB)worked as scintillator and photosensitizer,respectively.CIP was synthesized by a simple mechanical grinding method,and subsequently folic acid(FA)-modified albumin was introduced to enable its alliance with RB.NanoSRF exhibited excellent dispersion stability and generated a large amount of ROS under X-ray irradiation.The results of in vitro studies demonstrated its high selectivity for FA receptor-positive cancer cells.Following systemic administration,NanoSRF accumulated in H22 tumors of xenograft-bearing mice,and Xray irradiation(5.46 Gy)induced a significant inhibition rate of 96.7%in tumor growth.This study pioneers the use of copper iodide cluster as a scintillator in X-PDT,presenting new possibilities for designing scintillators with exceptional X-ray absorption and efficient X-PDT capabilities.
文摘Oriented aggregation of nanoparticles has been accomplished by means of solid state reac- tion. Non-crystallized and crystallized ZnO nanoparticles/clusters could be accommodated in the lamellar spacing of inorganic-organic composite, which were prepared by thermolysis of layered solid zinc-oleate complex at 260 and 300 ℃ in air, respectively. High-resolution transmission electron microscopy and selected area electron diffraction patterns indicate that aggregates are single crystals with various defects. The photoluminescence excitation spectra of both samples show two bands at 272 and 366 nm. The former may originate from electron transfer from valence band to conduction band in ZnO clusters composed of less than 200 ZnO molecules (2R〈2 nm).
基金supported by the National Natural Science Foundation of China (No.11604161)the Natural Science Foundation of Jiangsu Province (No.BK20160914)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.16KJB140009)the Foundation from Nanjing University of Posts and Telecommunication (No.NY216012)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sk lodowska-Curie Grant (No.752102)
文摘In this work, we proposed a novel three-dimensional (3D) plasmonic nanostructure based on porous graphene/nickel foam (GNF) and gas-phase deposited Ag nanoparticles (NPs). Ag NPs with high density were directly deposited on the surface of 3D GNF by performing a novel cluster beam deposition approach. In comparison with traditional Ag substrate (SiO2/Ag), such hot-spots enriched 3D nanostructure showed extremely high electromag-netic field enhancement under incident light irradiation which could be used as a sensitive chemical sensor based on surface enhanced Raman scattering (SERS). The experimental results demonstrated that the proposed nanostructure showed superior SERS performance in terms of Raman signal reproducibility and sensitivity for the probe molecules. 3D full-wave simulation showed that the enhanced SERS performance in this 3D hierarchical plasmonic nanostructure was mainly obtained from the hot-spots between Ag NPs and the near-field coupling between Ag NPs and GNF sca olds. This work can provide a novel assembled SERS substrate as a SERS-based chemical sensor in practical applications.
基金supported by JSPS KAKENHI Grant Numbers JP26810098 and JP16K17943~~
文摘Gold clusters and small nanoparticles supported on metal oxides could be prepared by deposition‐precipitation followed by microwave irradiation as a drying method and then calcination.The drying method influenced the size of the Au particles.Au(III)was partly reduced during conventional oven drying,resulting in Au aggregates.In contrast,Au(III)was preserved during microwave drying owing to rapid and uniform heating,and the Au diameter was minimized to1.4nm on Al2O3.This method can be applied to several metal oxide supports having different microwave absorption efficiencies,such as MnO2,Al2O3,and TiO2.These catalysts exhibited higher catalytic activities for CO oxidation at low temperature and for selective aerobic oxidation of sulfide than those prepared by conventional methods.
文摘Very small nickel oxide nanoparticles were prepared by a sol-gel procedure using nickel nitrate hexahydrate and ammonium hydroxide as precursors. The particles are in the range of 5 nm-11 rim. The x-ray diffraction (XRD) crystallography and high resolution transmission electron microscopy (HRTEM) were employed to characterize the samples. They were found to be polycrystalline in nature and fcc (NaCl-type) in structure, with the lattice parameter varying with annealing temperature. HRTEM pictures show that the as-prepared samples are hexagonal in shape. Positron annihilation spectroscopy was used to investigate the Doppler-broadened spectra of the samples. The S and W parameters revealed that the chemical surroundings and momentum distribution of the vacancy clusters vary with crystallite size.
基金supported by the National Natural Science Foundation of China(No.11627806 and No.61301015)supported by a Project funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions
文摘A nanocomposite electrocatalyst was prepared with the method of cluster beam deposition of palladium nanoparticle thin lms on carbon nanoparticle supporting layers and used as sensitive nonenzyme hydrogen peroxide sensors. An enhancement on the electrocatalytic activity of the palladium nanoparticles toward H2O2 reduction was observed, which was related to the coverage of the carbon nanoparticles. With one monolayer of carbon nanoparticles, the H2O2 detection sensitivity reached the maximum, which was more than twice of that of the pure Pd nanoparticles.
文摘The extensive application of TiO_(2)nanoparticles(NPs)highlights the importance of investigating their influence on aquatic systems.In this work,the effect of TiO_(2)NPs on heavy metals speciation was studied on a lab scale.For this goal,a series of aquaria containing water,sediment,and TiO_(2)NPs with various concentrations were set up.The study results revealed that TiO_(2)NPs caused(copper)Cu,(mercury)Hg,(titanium)Ti,and(zinc)Zn to be adsorbed by sediments in the forms of exchangeable and Fe-Mn species.According to measurements,30μg/L of TiO_(2)NPs made Cu,Hg,Ti and Zn concentration in the water column decreased from 33,1.14,20,and 32 to 4,0.58,3,and 22.3μg/L,respectively.Manganese(Mn)was also adsorbed by sediment,and in all experiments,its concentration in the water column reduced from 44 to about 20μg/L.Due to the photocatalytic capacity of TiO_(2)NPs,arsenic(As)concentration in the water column increased from 0 to 8.7μg/L with the introduction of30μg/L of TiO_(2)NPs.The sequential extraction results showed that in all experiments,concentrations of lead(Pb),nickel(Ni),and cobalt(Co)remained constant in different chemical species of sediment,which meant conservative behavior of them in presence of TiO_(2)NPs.In addition,a remarkable change was observed in water quality parameters such as ORP,TDS,TOC,BOD,NO3’and PO_(4)after the introduction of TiO_(2)NPs to aquaria.The reason behind these changes could be related to the decomposition of sediment organic content by TiO_(2)NPs.
基金JW and team thank the support of MOE,Singapore(MOE2018-T2-2-095),for research conducted at the National University of Singapore.
文摘Single-atom catalysts,featuring some of the most unique activities,selectivity,and high metal utilization,have been extensively studied over the past decade.Given their high activity,selectivity,especially towards small molecules or key intermediate conversions,they can be synergized together with other active species(typically other single atoms,atomic clusters,or nanoparticles)in either tandem or parallel or both,leading to much better performance in complex catalytic processes.Although there have been reports on effectively combining the multiple components into one single catalytic entity,the combination and synergy between single atoms and other active species have not been reviewed and examined in a systematic manner.Herein,in this overview,the key synergistic interactions,binary complementary effects,and the bifunctional functions of single atoms with other active species are defined and discussed in detail.The integration functions of their marriages are in-vestigated with particular emphasis on the homogeneous and heterogeneous combinations,spatial distribution,synthetic strategies,and the thus-derived outstanding catalytic performance,together with new light shined on the catalytic mechanisms by zooming in several case studies.The dynamic nature of each of the active species and in particular their interactions in such new catalytic entities in the heterogeneous electrocatalytic processes are visited,on the basis of the in situ/operando evidence.Last,we feature the current chal-lenges and future perspectives of these integrated catalytic entities that can offer guidance for advanced catalyst design by the rational combination and synergy of binary or multiple active species.
文摘Regenerative medicine requires new ways to assemble and manipulate cells for fabrication of tissue-like constructs. Here we report a novel approach for cell surface engineering of human cells using polymer-stabilized magnetic nanoparticles (MNPs). Cationic polyelectrolyte-coated MNPs are directly deposited onto cellular membranes, producing a mesoporous semi-permeable layer and rendering cells magnetically responsive. Deposition of MNPs can be completed within minutes, under cell-friendly conditions (room temperature and physiologic media). Microscopy (TEM, SEM, AFM, and enhanced dark-field imaging) revealed the intercalation of nanoparticles into the cellular microvilli network. A detailed viability investigation was performed and suggested that MNPs do not inhibit membrane integrity, enzymatic activity, adhesion, proliferation, or cytoskeleton formation, and do not induce apoptosis in either cancer or primary cells. Finally, magnetically functionalized cells were employed to fabricate viable layered planar (two-cell layers) cell sheets and 3D multicellular spheroids.
基金supported by the National Key Basic Research Program of China (2013CB933903)the National High Technology R&D Program of China (2012BAI23B08)the National Natural Science Foundation of China (20974065, 51173117 and 50830107)
文摘Superparamagnetic iron oxide (SPIO) nanoparticle clusters are one unique form which can enhance magnetic relaxivity and improve the magnetic resonance imaging contrast at the same iron concentration, comparing to single SPIO nanoparticles. Controlling of cluster size and other structural parameters have drawn great interests in this field to further improve their magnetic properties. In this study, we investigated how the interparticle distance (also known as neighbor distance) of SP10 nanocrystals within clusters affect their magnetic relaxation behaviors. To adjust the neighbor distance, different amount of cholesterol (CHO) was chosen as model spacers embedded into SPIO nanocluster systems with the help of amphiphilic diblock copolymer poly(ethylene glyco)-polyester. Small- angle X-ray scattering was applied to quantify the neighbor distance of SPIO clusters. The results demonstrated that the averaged SPIO nanocrystal neighbor distance of nan- oclusters increased with higher amount of added CHO. Moreover, these SPIO nanocrystal clusters had the promi- nent magnetic relaxation properties. Simultaneously, con- trolling of SPIO nanocrystal neighbor distance can regulate the saturation magnetization (Ms) and magnetic resonance (MR) T2 relaxation of the aggregation, and ultimately obtain better MR contrast effects with decreased neighbor distance.
基金financial support from the National Natural Science Foundation of China(Grant No.51802015)the Research Department Closed Carbon Cycle Economy(CCCE)at the Ruhr-University Bochum,Fundamental Research Funds for the Central Universities(No.FRF-TP-20-005A3)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(Grant No.QNXM20210016)。
文摘In this work,a novel in situ auto-reduction strategy was developed to encapsulate uniformly dispersed Pd clusters/nanoparticles in MIL-125-NH_(2).It is demonstrated that the amino groups in MIL-125-NH_(2)can react with formaldehyde to form novel reducing groups(-NH-CH_(2)OH),which can in situ auto-reduce the encapsulated Pd^(2+)ions to metallic Pd clusters/nanoparticles.As no additional reductants are required,the strategy limits the aggregation and migration of Pd clusters and the formation of large Pd nanoparticles via controlling the amount of Pd^(2+)precursor.When applied as catalysts in the hydrogenation of phenol in the aqueous phase,the obtained Pd(1.5)/MIL-125-NH-CH_(2)OH catalyst with highly dispersed Pd clusters/nanoparticles with the size of around 2 nm exhibited 100%of phenol conversion and 100%of cyclohexanone selectivity at 70℃ after 5 h,as well as remarkable reusability for at least five cycles due to the large MOF surface area,the highly dispersed Pd clusters/nanoparticles and their excellent stability within the MIL-125-NH-CH_(2)OH framework.
基金Project supported by the National Key Basic Research Program of China(Grant No.2017YFA0205004)the National Natural Science Foundation of China(Grant Nos.92165201,11474261,and 11634011)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.WK3510000006,and WK3430000003)the Anhui Initiative in Quantum Information Technologies(Grant No.AHY170000)。
文摘Nanoclusters consisting of a few atoms have attracted a lot of research interests due to their exotic size-dependent properties. Here, well-ordered two-dimensional Sb cluster superlattice was fabricated on Si substrate by a two-step method and characterized by scanning tunneling microscopy. High resolution scanning tunneling microscope measurements revealed the fine structures of the Sb clusters, which consist of several Sb atoms ranging from 2 to 7. Furthermore, the electronic structure of the nanocluster displays the quantized energy-level which is due to the single-electron tunneling effects. We believe that the fabrication of Sb cluster superlattice broadens the species of the cluster superlattice and provides a promising candidate to further explore the novel physical and chemical properties of the semimetal nanocluster.