The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quant...The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quantization at the surface of a twisted and twigged electron quanta and above its surface, fractional Fourier transform and Hermite function for fractional charge quantization is developed. With energy eigen value equation for QHE and with energy operator on an eigenfunction of a twisted and twigged electron quanta, the corresponding eigenfunctions are normalized with Schrodinger’s quantum wave mechanical equation for electric scalar and magnetic potentials, respectively (QED behavior). The fractional electric and magnetic fields with their corresponding potentials for the quantized fractional states in semiconducting hereto structures are theoretically calculated. Such mathematical expressions are in good agreement with experimental results of Nobel Prize winning scientists Klitzing, Haroche, Peter and Gruebber. Our results can also explain the hybridized states of orbits with emphasis on sigma and pi bonding and their corresponding antibonding orbitals as a manifestation of electrophilic and nucleophilic chemical reactions.展开更多
The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G...The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G-covariant electrodynamics, physical variables, e.g., rod length, clock rate, particle mass, momentum, and energy are G-invariants, determined by the object velocity v-w= vo=G-inv relative to the substratum frame, So(w=0) [v=object velocity relative to observer in S(w)] Galilean measurements using standard (i) contracted rods and (ii) retarded clocks, anisotropic light propagation, and conservation of EM energy and momentum in IFs S(w) are discussed. Fundamental experiments are formulated which permit measurement of substratum (w) induced EM and charge fields, the substratum velocity w, and verification of the G-invariance of the magnetic field, B= Bo=G-inv. The G-invariant Lagrangian and Hamiltonian of a charged particle in EM fields, and the momentum and energy conservation equations in Particle collisions are given for velocities |v-w|<co. The EM Doppler effects for moving source or moving observer are shown to exhibit measurable substratum effects. The spectral lines from a recoiling atom exhibit superimposed Doppler and substratum (w) shifts. The measurable substratum effects in the (i) aberration of light and (ii) reflection of light from a moving mirror are evaluated. The EM fields of accelerated charges in the substratum flow w are given, and applied to the anisotropic emission of x-rays in IFs S(w). G-covariant electrodynamics is examined for subluminal and superluminal electron velocities. Both the Cerenkov effect in (i) dielectrics for Iv--wl> c(ro) and (ii) vacuum for |v-w| > co are relative to the substratum So, and demonstrate the anisotropy of the vacuum in IFs S(w). G-covariant electrodynamics (relative to substratum) contains Lorentz covariant electrodynamics (relative to observer) in the special case w = 0 (So).展开更多
Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration χ and thereby invoke processes described by str...Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration χ and thereby invoke processes described by strong-field quantum electrodynamics(SFQED).Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high χ can be valuable for testing existing predictions,as well as for guiding further theoretical developments.Nevertheless,such experimental measurements are challenging due to the probabilistic nature of the interaction processes,dominating signals of low-χ interactions and limited capabilities to control and measure the alignment and synchronization in such collision experiments.Here we elaborate a methodology of using approximate Bayesian computations for drawing statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters that vary between experiments.As a proof-of-principle,we consider the problem of inferring the effective mass change due to coupling with the strong-field environment.展开更多
An electromagnetic theory that links quantum and relativistic phenomena in a single context is built. Wave-particle duality is the experimental proof of their common origin. In this context, Quantum Mechanics and Spec...An electromagnetic theory that links quantum and relativistic phenomena in a single context is built. Wave-particle duality is the experimental proof of their common origin. In this context, Quantum Mechanics and Special Relativity are two compatible synergistic theories. The developed theory shows the existence of superluminal effects that suggest an explanation to the entanglement between pairs of particles and photons.展开更多
Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent ...Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent effects in a unified fashion. Quantum electrodynamic effects are also considered for high-temperature scenarios. Electron-impact ionization of uranium ion U91+ and proton-impact ionization of hydrogen are given as examples.展开更多
The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The st...The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.展开更多
In present paper, we confirm our previous result [5] that the Planck constant is adiabatic invariant of the electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation of the...In present paper, we confirm our previous result [5] that the Planck constant is adiabatic invariant of the electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation of the Planck constant from the first principles with using of the actually measured cosmological parameters, gives value h = 6×10-27 (erg · s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((d/a/dt)/a) consist 1.0×10-18(1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, the classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that the adiabatic invariant of field is ET = 6×10-27 = h. Equations of electrodynamics on the Finslerian manifold are obtained. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of the manifold. We consider in details two direct consequences of the equations: i) cosmological redshift of photons and ii) effects of Aharonov-Bohm, that immediately follow from obtained equations. It is shown that quantization of systems consists of electromagnetic field and baryonic component (like atoms) is obvious and has clear explanation.展开更多
The impact of radiation reaction and Breit±Wheeler pair production on the acceleration of fully ionized carbon ions driven by an intense linearly polarized laser pulse has been investigated in the ultra-relativis...The impact of radiation reaction and Breit±Wheeler pair production on the acceleration of fully ionized carbon ions driven by an intense linearly polarized laser pulse has been investigated in the ultra-relativistic transparency regime.Against initial expectations, the radiation reaction and pair production at ultra-high laser intensities are found to enhance the energy gained by the ions. The electrons lose most of their transverse momentum, and the additionally produced pair plasma of Breit±Wheeler electrons and positrons co-streams in the forward direction as opposed to the existing electrons streaming at an angle above zero degree. We discuss how these observations could be explained by the changes in the phase velocity of the Buneman instability, which is known to aid ion acceleration in the breakout afterburner regime, by tapping the free energy in the relative electron and ion streams. We present evidence that these non-classical effects can further improve the highest carbon ion energies in this transparency regime.展开更多
By applying a nonperturbative quantum electrodynamic theory, we study ponderomotive resonances when an electron beam is scattered by a standing photon wave. Our study shows that the pondero- motive parameter Up, the p...By applying a nonperturbative quantum electrodynamic theory, we study ponderomotive resonances when an electron beam is scattered by a standing photon wave. Our study shows that the pondero- motive parameter Up, the ponderomotive energy per laser-photon energy, for each of the two traveling laser modes possesses a minimum valuehω/(mec2). Ponderomotive resonances occur only when the ratio of the laser photon energy to the electron rest-mass energy is a fraction, where the denomina- tor is twice the square of a positive integer and the numerator is the total ponderomotive number, which is also a positive integer.展开更多
We are reporting a theoretical prediction: The photoelectrons forming above-threshold-ionization (ATI) peaks emit both even and odd harmonics. These harmonics exhibit plateau and cut-off features similar to those o...We are reporting a theoretical prediction: The photoelectrons forming above-threshold-ionization (ATI) peaks emit both even and odd harmonics. These harmonics exhibit plateau and cut-off features similar to those odd-only harmonics observed in ATI experiments.展开更多
The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field ...The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities>4.7×10^(29) W/cm^(2). Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.展开更多
文摘The quantum electrodynamic (QED) behaviour is studied for quantum Hall effect (QHE). Quantum theory with conjecture of fractional charge quantization (quantum dipole moment), eigenfunctions for fractional charge quantization at the surface of a twisted and twigged electron quanta and above its surface, fractional Fourier transform and Hermite function for fractional charge quantization is developed. With energy eigen value equation for QHE and with energy operator on an eigenfunction of a twisted and twigged electron quanta, the corresponding eigenfunctions are normalized with Schrodinger’s quantum wave mechanical equation for electric scalar and magnetic potentials, respectively (QED behavior). The fractional electric and magnetic fields with their corresponding potentials for the quantized fractional states in semiconducting hereto structures are theoretically calculated. Such mathematical expressions are in good agreement with experimental results of Nobel Prize winning scientists Klitzing, Haroche, Peter and Gruebber. Our results can also explain the hybridized states of orbits with emphasis on sigma and pi bonding and their corresponding antibonding orbitals as a manifestation of electrophilic and nucleophilic chemical reactions.
文摘The Galilei covariant generalizations of the EM field equations (1984) (including moving media), Schroedinger, and Dirac (1985, 1993) equations for inertial frames S(w) with substratum velocity w are re- viewed. By G-covariant electrodynamics, physical variables, e.g., rod length, clock rate, particle mass, momentum, and energy are G-invariants, determined by the object velocity v-w= vo=G-inv relative to the substratum frame, So(w=0) [v=object velocity relative to observer in S(w)] Galilean measurements using standard (i) contracted rods and (ii) retarded clocks, anisotropic light propagation, and conservation of EM energy and momentum in IFs S(w) are discussed. Fundamental experiments are formulated which permit measurement of substratum (w) induced EM and charge fields, the substratum velocity w, and verification of the G-invariance of the magnetic field, B= Bo=G-inv. The G-invariant Lagrangian and Hamiltonian of a charged particle in EM fields, and the momentum and energy conservation equations in Particle collisions are given for velocities |v-w|<co. The EM Doppler effects for moving source or moving observer are shown to exhibit measurable substratum effects. The spectral lines from a recoiling atom exhibit superimposed Doppler and substratum (w) shifts. The measurable substratum effects in the (i) aberration of light and (ii) reflection of light from a moving mirror are evaluated. The EM fields of accelerated charges in the substratum flow w are given, and applied to the anisotropic emission of x-rays in IFs S(w). G-covariant electrodynamics is examined for subluminal and superluminal electron velocities. Both the Cerenkov effect in (i) dielectrics for Iv--wl> c(ro) and (ii) vacuum for |v-w| > co are relative to the substratum So, and demonstrate the anisotropy of the vacuum in IFs S(w). G-covariant electrodynamics (relative to substratum) contains Lorentz covariant electrodynamics (relative to observer) in the special case w = 0 (So).
基金support from the Swedish Research Council(Grant No.2017-05148 and No.201902376)provided by the National Academic Infrastructure for Supercomputing in Sweden(NAISS)at Tetralithpartially funded by the Swedish Research Council through grant agreement No.2022-06725
文摘Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration χ and thereby invoke processes described by strong-field quantum electrodynamics(SFQED).Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high χ can be valuable for testing existing predictions,as well as for guiding further theoretical developments.Nevertheless,such experimental measurements are challenging due to the probabilistic nature of the interaction processes,dominating signals of low-χ interactions and limited capabilities to control and measure the alignment and synchronization in such collision experiments.Here we elaborate a methodology of using approximate Bayesian computations for drawing statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters that vary between experiments.As a proof-of-principle,we consider the problem of inferring the effective mass change due to coupling with the strong-field environment.
文摘An electromagnetic theory that links quantum and relativistic phenomena in a single context is built. Wave-particle duality is the experimental proof of their common origin. In this context, Quantum Mechanics and Special Relativity are two compatible synergistic theories. The developed theory shows the existence of superluminal effects that suggest an explanation to the entanglement between pairs of particles and photons.
文摘Fundamental quantum transport equation for impact-ionization processes in fusion plasmas is formulated in the actor-spectator description. The density-matrix formulism is adopted to treat both coherent and incoherent effects in a unified fashion. Quantum electrodynamic effects are also considered for high-temperature scenarios. Electron-impact ionization of uranium ion U91+ and proton-impact ionization of hydrogen are given as examples.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000)the Heavy Ion Research Facility in Lanzhou (HIRFL)
文摘The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed.
文摘In present paper, we confirm our previous result [5] that the Planck constant is adiabatic invariant of the electromagnetic field propagating on the adiabatically changed Finslerian manifold. Direct calculation of the Planck constant from the first principles with using of the actually measured cosmological parameters, gives value h = 6×10-27 (erg · s). We also confirm that Planck constant (and hence other fundamental constants which depend on h) is varied on time due to changing of geometry. As an example the variation of the fine structure constant is calculated. Its relative variation ((d/a/dt)/a) consist 1.0×10-18(1/s). We show that on the Finsler manifold characterized by adiabatically changed geometry, the classical free electromagnetic field is quantized geometrically, from the properties of the manifold in such manner that the adiabatic invariant of field is ET = 6×10-27 = h. Equations of electrodynamics on the Finslerian manifold are obtained. It is stressed that quantization naturally appears from these equations and is provoked by adiabatically changed geometry of the manifold. We consider in details two direct consequences of the equations: i) cosmological redshift of photons and ii) effects of Aharonov-Bohm, that immediately follow from obtained equations. It is shown that quantization of systems consists of electromagnetic field and baryonic component (like atoms) is obvious and has clear explanation.
文摘The impact of radiation reaction and Breit±Wheeler pair production on the acceleration of fully ionized carbon ions driven by an intense linearly polarized laser pulse has been investigated in the ultra-relativistic transparency regime.Against initial expectations, the radiation reaction and pair production at ultra-high laser intensities are found to enhance the energy gained by the ions. The electrons lose most of their transverse momentum, and the additionally produced pair plasma of Breit±Wheeler electrons and positrons co-streams in the forward direction as opposed to the existing electrons streaming at an angle above zero degree. We discuss how these observations could be explained by the changes in the phase velocity of the Buneman instability, which is known to aid ion acceleration in the breakout afterburner regime, by tapping the free energy in the relative electron and ion streams. We present evidence that these non-classical effects can further improve the highest carbon ion energies in this transparency regime.
基金This work was partly supported by the Na- tional Natural Science Foundation of China (Grant Nos. 11004060, 11027403, and 51132004).
文摘By applying a nonperturbative quantum electrodynamic theory, we study ponderomotive resonances when an electron beam is scattered by a standing photon wave. Our study shows that the pondero- motive parameter Up, the ponderomotive energy per laser-photon energy, for each of the two traveling laser modes possesses a minimum valuehω/(mec2). Ponderomotive resonances occur only when the ratio of the laser photon energy to the electron rest-mass energy is a fraction, where the denomina- tor is twice the square of a positive integer and the numerator is the total ponderomotive number, which is also a positive integer.
基金Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11174304 and 61078080), the National Basic Research Program of China (973 Program) (Grant Nos. 2010CB923203 and 2011CB808103), and also the National Natural Science Foundation of China under Grant No. 11172302.
文摘We are reporting a theoretical prediction: The photoelectrons forming above-threshold-ionization (ATI) peaks emit both even and odd harmonics. These harmonics exhibit plateau and cut-off features similar to those odd-only harmonics observed in ATI experiments.
基金financial support from the European Research Council(ERC Grant Agreement No.694596)supported by the French National Research Agency(ANR)T-ERC program(Grant No.ANR-18-ERC2-0002)。
文摘The quantum vacuum plays a central role in physics. Quantum electrodynamics(QED) predicts that the properties of the fermionic quantum vacuum can be probed by extremely large electromagnetic fields. The typical field amplitudes required correspond to the onset of the ‘optical breakdown’ of this vacuum, expected at light intensities>4.7×10^(29) W/cm^(2). Approaching this ‘Schwinger limit’ would enable testing of major but still unverified predictions of power lasers. To close this considerable gap, a promising paradigm consists of reflecting these laser beams off a mirror in relativistic motion, to induce a Doppler effect that compresses the light pulse in time down to the attosecond range and converts it to shorter wavelengths, which can then be focused much more tightly than the initial laser light. However, this faces a major experimental hurdle: how to generate such relativistic mirrors? In this article, we explain how this challenge could nowadays be tackled by using so-called ‘relativistic plasma mirrors’. We argue that approaching the Schwinger limit in the coming years by applying this scheme to the latest generation of petawatt-class lasers is a challenging but realistic objective.