This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the act...This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the actions of all players in their action sets all the time,one has to resort to the projected gradient-based method.Under the assumption that the unique Nash equilibrium is the unique equilibrium of the pseudogradient system,an algorithm is proposed that is able to exponentially find the Nash equilibrium.Further,the authors also consider the distributed Nash equilibrium seeking problem for games whose actions are governed by high-order integrator dynamics and belong to some compact sets.Two examples are used to illustrate the proposed approach.展开更多
In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski...In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski separation are deduced. Using the results, we prove a drop theorem involving weakly countably compact sets in locally convex spaces. Moreover, we introduce the notion of the co-drop property and show that every weakly countably compact set has the co-drop property. If the underlying locally convex space is quasi-complete, then a bounded weakly closed set has the co-drop property if and only if it is weakly countably compact.展开更多
This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
基金supported in part by the Research Grants Council of the Hong Kong Special Administration Region under Grant No.14202619in part by the National Natural Science Foundation of China under Grant No.61973260。
文摘This paper studies the distributed Nash equilibrium seeking(DNES)problem for games whose action sets are compact and whose network graph is switching satisfying the jointly strongly connected condition.To keep the actions of all players in their action sets all the time,one has to resort to the projected gradient-based method.Under the assumption that the unique Nash equilibrium is the unique equilibrium of the pseudogradient system,an algorithm is proposed that is able to exponentially find the Nash equilibrium.Further,the authors also consider the distributed Nash equilibrium seeking problem for games whose actions are governed by high-order integrator dynamics and belong to some compact sets.Two examples are used to illustrate the proposed approach.
基金National Natural Science Foundation of China(10571035)
文摘In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski separation are deduced. Using the results, we prove a drop theorem involving weakly countably compact sets in locally convex spaces. Moreover, we introduce the notion of the co-drop property and show that every weakly countably compact set has the co-drop property. If the underlying locally convex space is quasi-complete, then a bounded weakly closed set has the co-drop property if and only if it is weakly countably compact.
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.