期刊文献+
共找到30篇文章
< 1 2 >
每页显示 20 50 100
Quantitative determination of the critical points of Mott metal–insulator transition in strongly correlated systems
1
作者 牛月坤 倪煜 +4 位作者 王建利 陈雷鸣 邢晔 宋筠 冯世平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期647-652,共6页
Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transiti... Mottness is at the heart of the essential physics in a strongly correlated system as many novel quantum phenomena occur in the metallic phase near the Mott metal–insulator transition. We investigate the Mott transition in a Hubbard model by using the dynamical mean-field theory and introduce the local quantum state fidelity to depict the Mott metal–insulator transition. The local quantum state fidelity provides a convenient approach to determining the critical point of the Mott transition. Additionally, it presents a consistent description of the two distinct forms of the Mott transition points. 展开更多
关键词 critical point metal–insulator transition local quantum state fidelity strongly correlated system quasiparticle coherent weight
下载PDF
Filling dependence of correlation exponents and metal-Mott insulator transition in strongly correlated electron systems
2
作者 林明喜 祁胜文 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期484-488,共5页
Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model i... Using a universal relation between electron filling factor and ground state energy, this paper studies the dependence of correlation exponents on the electron filling factor of one-dimensional extended Hubbard model in a strong coupling regime, and demonstrates that in contrast to the usual Hubbard model (gc = 1/2), the dimensionless coupling strength parameter gc heavily depends on the electron filling, and it has a "particle-hole" symmetry about electron quarter filling point. As increasing the nearest neighbouring repulsive interaction, the single particle spectral weight is transferred from low energy to high energy regimes. Moreover, at electron quarter filling, there is a metal-Mott insulator transition at the strong coupling point gc = 1/4, and this transition is a continuous phase transition. 展开更多
关键词 strong correlation correlation effect correlation exponent correlation function
下载PDF
Strongly correlated intermetallic rare-earth monoaurides(Ln-Au):Ab-initio study 被引量:2
3
作者 Sardar Ahmad M.Shafiq +2 位作者 Rashid Ahmad S.Jalali-Asadabadi Iftikhar Ahmad 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第10期1106-1111,共6页
In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using... In this paper, we explored the structural, elastic and mechanical properties of the strongly correlated electron systems, intermetallic Ln-Au(Ln = Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) in cubic structure,using PF-LAPW method within the density functional theory. Structural properties of these intermetallics were investigated by treating the exchange-correlation potential with the GGA-PBE, GGA-PBEsol and GGA + U. The effectiveness of the U for the structural properties as compared to other methods confirms the strong correlated nature of these compounds and the calculated lattice constants endorse the divalency of Yb. The results demonstrate the stable cubic CsCl structure of these compounds. Bulk modulus, Young's modulus, shear modulus, B/G ratio, Cauchy pressure, Poisson's ratio, anisotropic ratio,Kleinman parameters and Lame's coefficients were studied using the PBEsol to evaluate their importance in various types of engineering applications. The most prominent features of these compounds are their ductility, very high melting points, resistance to corrosion, and anisotropic nature. 展开更多
关键词 strongly correlated electron systems Rare-earth monoaurides Mechanical properties Ab-initio calculation
原文传递
Strongly correlated new state Fermi systems as a of matter
4
作者 V. R. Shaginyan A. Z. Msezane +2 位作者 G. S. Japaridze K. G. Popov V. A. Khodel 《Frontiers of physics》 SCIE CSCD 2016年第5期57-78,共22页
The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quant... The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimen- tal data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds. 展开更多
关键词 quantum phase transition flat bands systems quantum spin liquids heavy fermions effects scaling behavior new state of matter non-Fermi-liquid states strongly correlated electron quasicrystals thermoelectric and thermomagnetic
原文传递
Optimal precoding for full-duplex base stations under strongly correlated self-interference channels
5
作者 Jun WANG Xiao-jie WEN +1 位作者 Chuan HUANG Chao-jin QING 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2017年第6期808-816,共9页
We study the optimal precoding for a full-duplex (FD) system, where one FD multi-antenna base station (BS) respectively transmits to and receives from two half-duplex single-antenna mobile users (MUs) on the same time... We study the optimal precoding for a full-duplex (FD) system, where one FD multi-antenna base station (BS) respectively transmits to and receives from two half-duplex single-antenna mobile users (MUs) on the same time slot and frequency band. At the FD BS, the received signal from the desired MU is severely affected by the extremely strong self-interference (SI) from its transmit antennas to the receive antennas. In the presence of residual SI after imperfect SI cancellation, the downlink transmission rate maximization problem subject to a targeted uplink rate is formulated as a non-convex optimization problem to characterize the achievable rate region for the considered system. Considering the case in which the SI channel is strongly correlated, the above problem is transformed into a convex problem by exploiting the rank-one property of the SI channel, which can be solved efficiently. Finally, numerical results validate the effectiveness of the proposed scheme. 展开更多
关键词 Linear precoding Full-duplex Achievable rate region strongly correlated self-interference channel
原文传递
Kondo resonance assisted thermoelectric transport through strongly correlated quantum dots
6
作者 YongXi Cheng ZhenHua Li +3 位作者 JianHua Wei HongGang Luo HaiQing Lin YiJing Yan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2020年第9期118-126,共9页
We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations... We theoretically studied the thermoelectric transport properties of a strongly correlated quantum dot system in the presence of the Kondo effect based on accurate numerical evaluations using the hierarchical equations of motion approach.The thermocurrent versus gate voltage shows a distinct sawtooth line-shape at high temperatures.In particular,the current changes from positive(hole charge)to negative(particle charge)in the electron number N=1 region due to the Coulomb blockade effect.However,at low temperatures,where the Kondo effect occurs,the thermocurrent’s charge polarity reverses,along with a significantly enhanced magnitude.As anticipated,the current sign can be analyzed by the occupation difference between particle and hole.Moreover,the characteristic turnover temperature can be further defined at which the influences of the Coulomb blockade and Kondo resonance are in an effective balance.Remarkably,the identified characteristic turnover temperature,as a function of the Coulomb interaction and dot-lead coupling,possessed a much higher value than the Kondo temperature.When a magnetic field is applied,a spin-polarized thermocurrent can be obtained,which could be tested in future experiments. 展开更多
关键词 thermoelectric transport strongly correlated quantum dot Kondo resonance spin-polarized thermocurrent
原文传递
Field induced Chern insulating states in twisted monolayer–bilayer graphene
7
作者 王政文 韩英卓 +3 位作者 Kenji Watanabe Takashi Taniguchi 姜宇航 毛金海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期69-73,共5页
Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harbor... Unraveling the mechanism underlying topological phases, notably the Chern insulators(Ch Is) in strong correlated systems at the microscopy scale, has captivated significant research interest. Nonetheless, Ch Is harboring topological information have not always manifested themselves, owing to the constraints imposed by displacement fields in certain experimental configurations. In this study, we employ density-tuned scanning tunneling microscopy(DT-STM) to investigate the Ch Is in twisted monolayer–bilayer graphene(t MBG). At zero magnetic field, we observe correlated metallic states.While under a magnetic field, a metal–insulator transition happens and an integer Ch I is formed emanating from the filling index s = 3 with a Chern number C = 1. Our results underscore the pivotal role of magnetic fields as a powerful probe for elucidating topological phases in twisted Van der Waals heterostructures. 展开更多
关键词 Chern insulators strong correlation effects two-dimensional van der Waals heterostructure density-tuned scanning tunneling microscopy(DT-STM)
下载PDF
Magnetic ground state of plutonium dioxide: DFT+U calculations
8
作者 侯跃飞 江伟 +2 位作者 李淑静 付振国 张平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期421-428,共8页
The magnetic states of the strongly correlated system plutonium dioxide(PuO_(2)) are studied based on the density functional theory(DFT) plus Hubbard U(DFT +U) method with spin–orbit coupling(SOC) included. A series ... The magnetic states of the strongly correlated system plutonium dioxide(PuO_(2)) are studied based on the density functional theory(DFT) plus Hubbard U(DFT +U) method with spin–orbit coupling(SOC) included. A series of typical magnetic structures including the multiple-k types are simulated and compared in the aspect of atomic structure and total energy. We test LDA, PBE, and SCAN exchange–correlation functionals on PuO_(2) and a longitudinal 3k antiferromagnetic(AFM) ground state is theoretically determined. This magnetic structure has been identified to be the most stable one by the former computational work using the hybrid functional. Our DFT +U + SOC calculations for the longitudinal 3k AFM ground state suggest a direct gap which is in good agreement with the experimental value. In addition, a genetic algorithm is employed and proved to be effective in predicting magnetic ground state of PuO2. Finally, a comparison between the results of two extensively used DFT +U approaches to this system is made. 展开更多
关键词 strongly correlated system magnetic ground state noncollinear Mag Gene
下载PDF
The abnormal lattice contraction of plutonium hydrides studied by first-principles calculations 被引量:3
9
作者 敖冰云 史鹏 +1 位作者 郭咏 高涛 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期426-430,共5页
Pu can be loaded with H forming complicated continuous solid solutions and compounds,and causing remarkable electronic and structural changes.Full potential linearized augmented plane wave methods combined with Hubbar... Pu can be loaded with H forming complicated continuous solid solutions and compounds,and causing remarkable electronic and structural changes.Full potential linearized augmented plane wave methods combined with Hubbard parameter U and the spin-orbit effects are employed to investigate the electronic and structural properties of stoichiometric and non-stoichiometric face-centered cubic Pu hydrides(PuHx,x=2,2.25,2.5,2.75,3).The decreasing trend with increasing x of the calculated lattice parameters is in reasonable agreement with the experimental findings.A comparative analysis of the electronic-structure results for a series of PuH x compositions reveals that the lattice contraction results from the associated effects of the enhanced chemical bonding and the size effects involving the interstitial atoms.We find that the size effects are the driving force for the abnormal lattice contraction. 展开更多
关键词 PLUTONIUM density functional theory strongly correlated electron system crystal structure
下载PDF
First-principles calculations of electronic and magnetic properties of CeN:The LDA +U method
10
作者 郝爱民 白静 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期460-462,共3页
Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majo... Electronic and magnetic properties of CeN are investigated using first-principles calculations based on density func- tional theory (DFT) with the LDA + U method. Our results show that CeN is a half-metal. The majority-spin electron band structure has metallic intersections, whereas the minority-spin electron band structure has a semiconducting gap straddling the Fermi level. A small indirect energy gap occurs between X and W. The calculated magnetic moment is 0.99 μb per unit cell. 展开更多
关键词 first-principles calculations strongly correlated system electronic structure magnetic properties
下载PDF
Kosterlitz–Thouless transition, spectral property and magnetic moment for a two-dot structure with level difference
11
作者 熊永臣 周望怀 +1 位作者 张俊 南楠 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期378-383,共6页
By means of the numerical renormalization group method, we study the phase transition, the spectral property, and the temperature-dependent magnetic moment for a parallel double dot system with level difference, where... By means of the numerical renormalization group method, we study the phase transition, the spectral property, and the temperature-dependent magnetic moment for a parallel double dot system with level difference, where the dot energies are kept symmetric to the half-filled level. A Kosterlitz–Thouless(KT) transition between local spin triplet and singlet is found. In the triplet regime, the local spin is partially screened by the conduction leads and spin-1 Kondo effect is realized.While for the singlet, the Kondo peak is strongly suppressed and the magnetic moment decreases to 0 at a definite low temperature. We attribute this KT transition to the breaking of the reflection symmetry, resulting from the difference of the charge occupations of the two dots. To understand this KT transition and related critical phenomena, detailed scenarios are given in the transmission coefficient and the magnetic moment, and an effective Kondo model refers to the RayleighSchrdinger perturbation theory is used. 展开更多
关键词 double dot Structure Kosterlitz-Thouless transition numerical renormalization group strongly correlated effect
下载PDF
Electronic structure and magnetic properties of rare-earth perovskite gallates from first principles
12
作者 A Dahani H Alamri +4 位作者 B Merabet A Zaoui S Kacimi A Boukortt M Bejar 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期375-385,共11页
The density functional calculation is performed for centrosymmetric(La–Pm) GaO3 rare earth gallates, using a full potential linear augmented plane wave method with the LSDA and LSDA+U exchange correlation to treat... The density functional calculation is performed for centrosymmetric(La–Pm) GaO3 rare earth gallates, using a full potential linear augmented plane wave method with the LSDA and LSDA+U exchange correlation to treat highly correlated electrons due to the very localized 4f orbitals of rare earth elements, and explore the influence of U = 0.478 Ry on the magnetic phase stability and the densities of states. LSDA+U calculation shows that the ferromagnetic(FM) state of RGaO3 is energetically more favorable than the anti-ferromagnetic(AFM) one, except for LaGaO3 where the NM state is the lowest in energy. The energy band gaps of RGaO3 are found to be in the range of 3.8–4.0 eV, indicating the semiconductor character with a large gap. 展开更多
关键词 DFT+U+SO strongly correlated electron systems MAGNETISM rare earth gallates perovskites
下载PDF
Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings
13
作者 熊永臣 王为忠 +1 位作者 杨俊涛 黄海铭 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期403-408,共6页
The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capac... The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method.We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t.For small t,three dots form a local spin doublet.As t increases,due to the competition between V and t,there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet.When t is absent,the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage.While for sufficient t,the antiferromagnetic spin correlation between dots is enhanced,and the conductance is strongly suppressed for the bonding state is almost doubly occupied. 展开更多
关键词 quantum phase transition Coulomb blockade effect triangular quantum dots strongly correlated system
下载PDF
Relevance of 3d multiplet structure in nickelate and cuprate superconductors
14
作者 蒋密 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期18-28,共11页
The recent discovery of superconductivity in doped rare-earth infinite-layer nickelates RNiO_(2),R=Nd,Pr as a new family of unconventional superconductors has inspired extensive research on their intriguing properties... The recent discovery of superconductivity in doped rare-earth infinite-layer nickelates RNiO_(2),R=Nd,Pr as a new family of unconventional superconductors has inspired extensive research on their intriguing properties.One of the major motivation to explore the nickelate superconductors originated from their similarities with and differences from the cuprate superconductors,which have been extensively studied over the last decades but are still lack of the thorough understanding.In this short review,we summarized our recent investigation of the relevance of Ni/Cu-3d multiplet structure on the hole doped spin states in cuprate and recently discovered nickelate superconductors via an impurity model incorporating all the 3d orbitals.Further plausible explorations to be conducted are outlined as well.Our presented work provides an insightful framework for the investigation of the strongly correlated electronic systems in terms of the multiplet structure of transition metal compounds. 展开更多
关键词 strongly correlated systems cuprate superconductors infinite-layer nickelates multi-orbital Hubbard model
下载PDF
Phase transition and charge transport through a triple dot device beyond the Kondo regime
15
作者 熊永臣 朱占武 贺泽东 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期628-634,共7页
Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by m... Semiconductor quantum dot structure provides a promising basis for quantum information processing, within which to reveal the quantum phase and charge transport is one of the most important issues. In this paper, by means of the numerical renormalization group technique, we study the quantum phase transition and the charge transport for a parallel triple dot device in the strongly correlated limit, focusing on the effect of inter-dot hopping t beyond the Kondo regime. We find the quantum behaviors depend closely on the initial electron number on the dots, and the present model may map to single,double, and side-coupled impurity models in different parameter spaces. An orbital spin-1/2 Kondo effect between the conduction leads and the bonding orbital, and several magnetic-frustration phases are demonstrated when t is adjusted to different regimes. To understand these phenomena, a canonical transformation of the energy levels is given, and important physical quantities with respect to increasing t and necessary theoretical discussions are shown. 展开更多
关键词 semiconductor quantum dot device parallel triple dot structure quantum phase transition charge transport strongly correlated effect
下载PDF
Electron-correlation-induced band renormalization and Mott transition in Ca_(1-x)Sr_xVO_3
16
作者 王广涛 张敏平 郑立花 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期329-333,共5页
We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for ... We present the local density approximate+Gutzwiller results for the electronic structure of Cal-xSrxVOa. The substitution of Sr2+ by Ca2+ reduces the bandwidth, as the V-O-V bond angle decreases from 180° for SrVO3 to about 160° for CaVO3. However, we find that the bandwidth decrease induced by the V-O-V bond angle decrease is smaller as compared to that induced by electron correlation. In correlated electron systems, such as Cal-=Sr=VOa, the correlation effect of 3d electrons plays a leading role in determining the bandwidth. The electron correlation effect and crystal field splitting collaboratively determine whether the compounds will be in a metal state or in a Mort-insulator phase. 展开更多
关键词 electronic structure calculation strongly correlated system metal-insulator transition
下载PDF
Implementation of LDA+ Gutzwiller with Newton's method
17
作者 张健 田明锋 +2 位作者 金光希 徐远锋 戴希 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期391-398,共8页
In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calcul... In order to calculate the electronic structure of correlated materials, we propose implementation of the LDA+Gutzwiller method with Newton's method. The self-consistence process, efficiency and convergence of calculation are improved dramatically by using Newton's method with golden section search and other improvement approaches.We compare the calculated results by applying the previous linear mix method and Newton's method. We have applied our code to study the electronic structure of several typical strong correlated materials, including SrVO3, LaCoO3, and La2O3Fe2Se2. Our results fit quite well with the previous studies. 展开更多
关键词 LDA+Gutzwiller strongly correlated electrons Newton's method
下载PDF
Real-space parallel density matrix renormalization group with adaptive boundaries
18
作者 陈富州 程晨 罗洪刚 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期191-197,共7页
We propose an improved real-space parallel strategy for the density matrix renormalization group(DMRG)method,where boundaries of separate regions are adaptively distributed during DMRG sweeps.Our scheme greatly improv... We propose an improved real-space parallel strategy for the density matrix renormalization group(DMRG)method,where boundaries of separate regions are adaptively distributed during DMRG sweeps.Our scheme greatly improves the parallel efficiency with shorter waiting time between two adjacent tasks,compared with the original real-space parallel DMRG with fixed boundaries.We implement our new strategy based on the message passing interface(MPI),and dynamically control the number of kept states according to the truncation error in each DMRG step.We study the performance of the new parallel strategy by calculating the ground state of a spin-cluster chain and a quantum chemical Hamiltonian of the water molecule.The maximum parallel efficiencies for these two models are 91%and 76%in 4 nodes,which are much higher than the real-space parallel DMRG with fixed boundaries. 展开更多
关键词 density matrix renormalization group strongly correlated systems message passing interface
下载PDF
Improved hybrid parallel strategy for density matrix renormalization group method
19
作者 陈富州 程晨 罗洪刚 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期228-233,共6页
We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on ... We propose a new heterogeneous parallel strategy for the density matrix renormalization group(DMRG)method in the hybrid architecture with both central processing unit(CPU)and graphics processing unit(GPU).Focusing on the two most time-consuming sections in the finite DMRG sweeps,i.e.,the diagonalization of superblock and the truncation of subblock,we optimize our previous hybrid algorithm to achieve better performance.For the former,we adopt OpenMP application programming interface on CPU and use our own subroutines with higher bandwidth on GPU.For the later,we use GPU to accelerate matrix and vector operations involving the reduced density matrix.Applying the parallel scheme to the Hubbard model with next-nearest hopping on the 4-leg ladder,we compute the ground state of the system and obtain the charge stripe pattern which is usually observed in high temperature superconductors.Based on simulations with different numbers of DMRG kept states,we show significant performance improvement and computational time reduction with the optimized parallel algorithm.Our hybrid parallel strategy with superiority in solving the ground state of quasi-two dimensional lattices is also expected to be useful for other DMRG applications with large numbers of kept states,e.g.,the time dependent DMRG algorithms. 展开更多
关键词 density matrix renormalization group strongly correlated model hybrid parallelization
下载PDF
A first-principles study of the structural and elastic properties of orthorhombic and tetragonal Ca_3Mn_2O_7 被引量:1
20
作者 张玮 童培庆 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期465-471,共7页
The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within t... The structural and elastic properties of multiferroic Ca3Mn2O7 with ferroelectric orthorhombic (O-phase) and paraelectric tetragonal structures (T-phase) have been studied by first-principles calculations within the generalized gradient approximation (GGA) and the GGA plus Hubbard U approaches (GGA + U). The calculated theoretical structures are in good agreement with the experimental values. The T-phase is found to be antiferromagnetic (AFM) and the AFM O-phase is more stable than the T-phase, which also agree with the experiments. On these bases, the single-crystal elastic constants (Cijs) and elastic properties of polycrystalline aggregates are investigated for the two phases. Our elasticity calculations indicate Ca3Mn2O7 is mechanically stable against volume expansions. The AFM O-phase is found to be a ductile material, while the AFM T-phase shows brittle nature and tends to be elastically isotropic. We also investigate the influence of strong correlation effects on the elastic properties, qualitatively consistent results are obtained in a reasonable range of values of U. Finally, the ionicity is discussed by Bader analysis. Our work provides useful guidance for the experimental elasticity measurements of Ca3Mn2O7, and makes the strain energy calculation in multiferroic Ca3Mn2O7 thin films possible. 展开更多
关键词 elastic constant elastic anisotropy strong correlation effect MULTIFERROIC
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部