In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. W...In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.展开更多
R是任意一个结合环,M既是左R-模又是右R-模。M称为强余纯内射的,如果对于任意的内射R-模E和任意的i≥1都有Ext^i(E,M)=0;如果Ext^1(E,M)=0,我们称M是余纯内射的。类似的,M称为余纯平坦的,如果对于任意的内射R-模E和任意的i≥1都有Tor_i(...R是任意一个结合环,M既是左R-模又是右R-模。M称为强余纯内射的,如果对于任意的内射R-模E和任意的i≥1都有Ext^i(E,M)=0;如果Ext^1(E,M)=0,我们称M是余纯内射的。类似的,M称为余纯平坦的,如果对于任意的内射R-模E和任意的i≥1都有Tor_i(E,M)=0;如果Tor_1(E,M)=0,我们称M是余纯平坦的。我们找出并证明了(强)余纯内射模和(强)余纯平坦模之间的关系。更重要的是,我们给出了由Enochs and Jenda所列出的一些重要结论的证明。展开更多
基金supported by National Natural Science Foundation of China(10961021,11001222)
文摘In basic homological algebra, the flat and injective dimensions of modules play an important and fundamental role. In this paper, the closely related IFP-flat and IFP-injective dimensions are introduced and studied. We show that IFP-fd(M) = IFP-id(M+) and IFP-fd(M+)=IFP-id(M) for any R-module M over any ring R. Let :Z-In (resp., "Zgv,~) he the class of all left (resp., right) R-modules of IFP-injective (resp., IFP-flat) dimension at most n. We prove that every right R-module has an IFn- preenvelope, (IFn,IF⊥n) is a perfect cotorsion theory over any ring R, and for any ring R with IFP-id(RR) 〈 n, (IIn,II⊥n) is a perfect cotorsion theory. This generalizes and improves the earlier work (J. Algebra 242 (2001), 447-459). Finally, some applications are given.
文摘R是任意一个结合环,M既是左R-模又是右R-模。M称为强余纯内射的,如果对于任意的内射R-模E和任意的i≥1都有Ext^i(E,M)=0;如果Ext^1(E,M)=0,我们称M是余纯内射的。类似的,M称为余纯平坦的,如果对于任意的内射R-模E和任意的i≥1都有Tor_i(E,M)=0;如果Tor_1(E,M)=0,我们称M是余纯平坦的。我们找出并证明了(强)余纯内射模和(强)余纯平坦模之间的关系。更重要的是,我们给出了由Enochs and Jenda所列出的一些重要结论的证明。