An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of...An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.展开更多
The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- reg...The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.展开更多
Let R be a ring with an endomorphismσ,F∪{0}the free monoid generated by U={u1,…,ut}with 0 added,and M a factor of F obtained by setting certain monomials in F to 0 such that M^(n)=0 for some n.Then we can form the ...Let R be a ring with an endomorphismσ,F∪{0}the free monoid generated by U={u1,…,ut}with 0 added,and M a factor of F obtained by setting certain monomials in F to 0 such that M^(n)=0 for some n.Then we can form the non-semiprime skew monoid ring R[M;σ].A local ring R is called bleached if for any j∈J(R)and any u∈U(R),the abelian group endomorphisms l_(u)−r_(j) and l_(j)−r_(u) of R are surjective.Using R[M;σ],we provide various classes of both bleached and non-bleached local rings.One of the main problems concerning strongly clean rings is to characterize the rings R for which the matrix ring M_(n)(R)is strongly clean.We investigate the strong cleanness of the full matrix rings over the skew monoid ring R[M;σ].展开更多
Generalizing the notion of strongly nil clean rings,we introduce strongly quasinil clean rings.Some fundamental properties and equivalent characterizations of this class of rings are provided.By means of g-Drazin inve...Generalizing the notion of strongly nil clean rings,we introduce strongly quasinil clean rings.Some fundamental properties and equivalent characterizations of this class of rings are provided.By means of g-Drazin inverses,Cline's formula and Jacobson's lemma for strongly quasi-nil clean elements are investigated.展开更多
We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices ov...We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices over power series are also studied.展开更多
基金The National Natural Science Foundation of China(No.10971024)the Specialized Research Fund for the Doctoral Program of Higher Education(No.200802860024)the Natural Science Foundation of Jiangsu Province(No.BK2010393)
文摘An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.
基金The Foundation for Excellent Doctoral Dissertationof Southeast University (NoYBJJ0507)the National Natural ScienceFoundation of China (No10571026)the Natural Science Foundation ofJiangsu Province (NoBK2005207)
文摘The concept of the strongly π-regular general ring (with or without unity) is introduced and some extensions of strongly π-regular general rings are considered. Two equivalent characterizations on strongly π- regular general rings are provided. It is shown that I is strongly π-regular if and only if, for each x ∈I, x^n =x^n+1y = zx^n+1 for n ≥ 1 and y, z ∈ I if and only if every element of I is strongly π-regular. It is also proved that every upper triangular matrix general ring over a strongly π-regular general ring is strongly π-regular and the trivial extension of the strongly π-regular general ring is strongly clean.
文摘Let R be a ring with an endomorphismσ,F∪{0}the free monoid generated by U={u1,…,ut}with 0 added,and M a factor of F obtained by setting certain monomials in F to 0 such that M^(n)=0 for some n.Then we can form the non-semiprime skew monoid ring R[M;σ].A local ring R is called bleached if for any j∈J(R)and any u∈U(R),the abelian group endomorphisms l_(u)−r_(j) and l_(j)−r_(u) of R are surjective.Using R[M;σ],we provide various classes of both bleached and non-bleached local rings.One of the main problems concerning strongly clean rings is to characterize the rings R for which the matrix ring M_(n)(R)is strongly clean.We investigate the strong cleanness of the full matrix rings over the skew monoid ring R[M;σ].
基金the National Natural Science Foundation of China (No.11401009)the Key Natural Science Foundation of Anhui Educational Committee (No.KJ2014A082)the Anhui Provincial Natural Science Foundation (No.1408085QA01).
文摘Generalizing the notion of strongly nil clean rings,we introduce strongly quasinil clean rings.Some fundamental properties and equivalent characterizations of this class of rings are provided.By means of g-Drazin inverses,Cline's formula and Jacobson's lemma for strongly quasi-nil clean elements are investigated.
基金The research of the author was supported by the Natural Science Foundation of Zhejiang Province (LY13A010019) and the Fund of Hangzhou Normal University, China.
文摘We get criteria of strong cleanness for several classes of 2 × 2 matrices over integers. For commutative local domains, we establish ones in terms of solvability of quadratic equations. Strongly clean matrices over power series are also studied.