In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even ped...In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.展开更多
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel...It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.展开更多
Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interfe...Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions.展开更多
To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance....To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.展开更多
The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and mu...The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n+ 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions.展开更多
To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is intro...To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF).展开更多
An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed...An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.展开更多
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP i...Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.展开更多
A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman fil...A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.展开更多
GPS/Dead-reckoning navigation system for autonomous underwater vehicle (AUV) is introduced, which includes navigation overall architecture, hardware and software structure. Dead-reckoning theory is presented in detail...GPS/Dead-reckoning navigation system for autonomous underwater vehicle (AUV) is introduced, which includes navigation overall architecture, hardware and software structure. Dead-reckoning theory is presented in details. And the strong tracking Kalman filter and Singer model are applied to handle the imprecise navigation mode, which can improve the navigation system’s precision and reliability. Finally, the sea experiments which include autonomous search mission in an unknown area and long distance motion are conducted to demonstrate the reliability and feasibility of the navigation system.展开更多
The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing...The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.展开更多
In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching th...In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM.展开更多
The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear...The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions.展开更多
Square-root cubature Kalman filter (SCKF) is more effective for nonlinear state estimation than an unscented Kalman filter.In this paper,we study the design of nonlinear filters based on SCKF for the system with one s...Square-root cubature Kalman filter (SCKF) is more effective for nonlinear state estimation than an unscented Kalman filter.In this paper,we study the design of nonlinear filters based on SCKF for the system with one step noise correlation and abrupt state change.First,we give the SCKF that deals with the one step correlation between process and measurement noises,SCKF-CN in short.Second,we introduce the idea of a strong tracking filter to construct the adaptive square-root factor of the prediction error covariance with a fading factor,which makes SCKF-CN obtain outstanding tracking performance to the system with target maneuver or abrupt state change.Accordingly,the tracking performance of SCKF is greatly improved.A universal nonlinear estimator is proposed,which can not only deal with the conventional nonlinear filter problem with high dimensionality and correlated noises,but also achieve an excellent strong tracking performance towards the abrupt change of target state.Three simulation examples with a bearings-only tracking system are illustrated to verify the efficiency of the proposed algorithms.展开更多
Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust- ness of external in...Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust- ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty in modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and improve the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.展开更多
The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which...The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.展开更多
A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally becaus...A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.展开更多
An improved cubature Kalman filter(CKF)algorithm for estimating the state of charge of lithium-ion batteries is proposed.This improved algorithm implements the diagonalization decomposition of the covariance matrix an...An improved cubature Kalman filter(CKF)algorithm for estimating the state of charge of lithium-ion batteries is proposed.This improved algorithm implements the diagonalization decomposition of the covariance matrix and a strong tracking filter.First,a first-order RC equivalent circuit model is first established and verified,whose voltage estimation error is within 1.5%;this confirms that the model can be used to describe the characteristics of a battery.Then the calculation processes of the traditional and proposed CKF algorithms are compared.Subsequently,the improved CKF algorithm is applied to the state of charge estimation under the constant-current discharge and dynamic stress test conditions.The average errors for these two conditions are 0.76%and 1.2%,respectively,and the maximum absolute error is only 3.25%.The results indicate that the proposed method has higher filter stability and estimation accuracy than the extended Kalman filter(EKF),unscented Kalman filter(UKF)and traditional CKF algorithms.Finally,the convergence rates of the above four algorithms are compared,among which the proposed algorithm track the referenced values at the highest speed.展开更多
基金funded by the project“Design of System Integration Construction Scheme Based on Functions of Each Module” (No.XDHT2020169A)the project“Development of Indoor Inspection Robot System for Substation” (No.XDHT2019501A).
文摘In recent years,a number of wireless indoor positioning(WIP),such as Bluetooth,Wi-Fi,and Ultra-Wideband(UWB)technologies,are emerging.However,the indoor environment is complex and changeable.Walls,pillars,and even pedestrians may block wireless signals and produce non-line-of-sight(NLOS)deviations,resulting in decreased positioning accuracy and the inability to provide people with real-time continuous indoor positioning.This work proposed a strong tracking particle filter based on the chi-square test(SPFC)for indoor positioning.SPFC can fuse indoor wireless signals and the information of the inertial sensing unit(IMU)in the smartphone and detect the NLOS deviation through the chi-square test to avoid the influence of the NLOS deviation on the final positioning result.Simulation experiment results show that the proposed SPFC can reduce the positioning error by 15.1%and 12.3% compared with existing fusion positioning systems in the LOS and NLOS environment.
基金provided by the shale gas resource evaluation methods and exploration technology research project of the National Science and Technology Major Project of China(No.2016ZX05034)Graduate Innovative Engineering Funding Project of China University of Petroleum(East China)(No.YCX2021109)。
文摘It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761.
基金supported by the National Natural Science Foundation of China(No.60971104)the Program for New Century Excellent Talents in University of China(No.NCET-05-0794)the Young Teacher Scientific Research Foundation of Southwest Jiaotong University(No.2009Q032)
文摘Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction.However,due to the high nonlinearity of eye motion,how to ensure the robustness of external interference and accuracy of eye tracking pose the primary obstacle to the integration of eye movements into today's interfaces.In this paper,we present a strong tracking unscented Kalman filter (ST-UKF) algorithm,aiming to overcome the difficulty in nonlinear eye tracking.In the proposed ST-UKF,the Suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking.Compared with the related Kalman filter for eye tracking,the proposed ST-UKF has potential advantages in robustness and tracking accuracy.The last experimental results show the validity of our method for eye tracking under realistic conditions.
文摘To improve underwater vehicle dead reckoning, a developed strong tracking adaptive kalman filter is proposed. The filter is improved with an additional adaptive factor and an estimator of measurement noise covariance. Since the magnitude of fading factor is changed adaptively, the tracking ability of the filter is still enhanced in low velocity condition of underwater vehicles. The results of simulation tests prove the presented filter effective.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971104)the Fundamental Research Funds for the Cental Universities (Grant No. SWJTU09BR092)the Young Teacher Scientific Research Foundation of Southwest Jiaotong University (Grant No. 2009Q032)
文摘The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n+ 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions.
基金National Natural Science Foundations of China(Nos.51175082,60874092,51375088)
文摘To solve the problem that the choice of softening factor in conventional adaptive strong tracking filter( STF) greatly relies on the experience and computer simulation,a new concept of softening factor matrix is introduced and a fuzzy adaptive strong tracking cubature Kalman filter( FASTCKF) based on fuzzy logic controller is proposed. This method monitors residual absolute mean and standard deviation of each measurement component with fuzzy logic adaptive controller( FLAC),and adjusts the softening factor matrix dynamically by fuzzy rules,which is capable to modify suboptimal fading factor of STF adaptively and improve the filter's robust adaptive capacity. The simulation results show that the improved filtering performance is superior to the conventional square root cubature Kalman filter( SCKF) and the strong tracking square root cubature Kalman filter( STSCKF).
基金supported by the National Natural Science Foundation of China (61304254)the National Science Foundation for Distinguished Young Scholars of China (60925011)the Provincial and Ministerial Key Fund of China (9140A07010511BQ0105)
文摘An adaptive unscented Kalman filter (AUKF) and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects. A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter (UKF) when the process noise is inaccuracy, and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise. An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF. Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (No. 60025307, No. 60234010) the National 863 Project(No. 2001AA413130,2002AA412420)+1 种基金 Research Fund for the Doctoral Program of Higher Education (No. 20020003063) the National 973 Program
文摘Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(61573283)
文摘A novel low-cost adaptive square-root cubature Kalmanfilter (LCASCKF) is proposed to enhance the robustness of processmodels while only increasing the computational load slightly.It is well-known that the Kalman filter cannot handle uncertainties ina process model, such as initial state estimation errors, parametermismatch and abrupt state changes. These uncertainties severelyaffect filter performance and may even provoke divergence. Astrong tracking filter (STF), which utilizes a suboptimal fading factor,is an adaptive approach that is commonly adopted to solvethis problem. However, if the strong tracking SCKF (STSCKF)uses the same method as the extended Kalman filter (EKF) tointroduce the suboptimal fading factor, it greatly increases thecomputational load. To avoid this problem, a low-cost introductorymethod is proposed and a hypothesis testing theory is applied todetect uncertainties. The computational load analysis is performedby counting the total number of floating-point operations and it isfound that the computational load of LCASCKF is close to that ofSCKF. Experimental results prove that the LCASCKF performs aswell as STSCKF, while the increase in computational load is muchlower than STSCKF.
文摘GPS/Dead-reckoning navigation system for autonomous underwater vehicle (AUV) is introduced, which includes navigation overall architecture, hardware and software structure. Dead-reckoning theory is presented in details. And the strong tracking Kalman filter and Singer model are applied to handle the imprecise navigation mode, which can improve the navigation system’s precision and reliability. Finally, the sea experiments which include autonomous search mission in an unknown area and long distance motion are conducted to demonstrate the reliability and feasibility of the navigation system.
文摘The strapdown homing guidance system for some ammunition was mainly studied. A strong tracking Kalman filter was designed for the strapdown homing guidance system using the information measured by the strapdown homing seeker to estimate relative movement variables between the ammunition and target. Then the optimal proportional law, which using the estimated information, guided the ammunition. Simulation results show that the designed strapdown homing guidance system with strong tracking Kalman filter can attack the maneuvering target effectively, and satisfy the performance index for the guided ammunition system.
基金National Natural Science Foundation of China !( No.69772 0 3 1)
文摘In fault identification, the Strong Tracking Filter (STF) has strong ability to track the change of some parameters by whitening filtering innovation. In this paper, the authors give out a modified STF by searching the fading factor based on the Least Squared Estimation. In hybrid estimation, the well known Interacting Multiple Model (IMM) Technique can model the change of the system modes. So one can design a new adaptive filter — SIMM. In this filter, our modified STF is a parameter adaptive part and IMM is a mode adaptive part. The benefit of the new filter is that the number of models can be reduced considerably. The simulations show that SIMM greatly improves accuracy of velocity and acceleration compared with the standard IMM to track the maneuvering target when 2 model conditional estimators are used in both filters. And the computation burden of SIMM increases only 6% compared with IMM.
基金supported by the National Natural Science Foundation of China (No. 61573283)
文摘The fading factor exerts a significant role in the strong tracking idea. However, traditional fading factor introduction method hinders the accuracy and robustness advantages of current strong-tracking-based nonlinear filtering algorithms such as Cubature Kalman Filter(CKF) since traditional fading factor introduction method only considers the first-order Taylor expansion. To this end, a new fading factor idea is suggested and introduced into the strong tracking CKF method.The new fading factor introduction method expanded the number of fading factors from one to two with reselected introduction positions. The relationship between the two fading factors as well as the general calculation method can be derived based on Taylor expansion. Obvious superiority of the newly suggested fading factor introduction method is demonstrated according to different nonlinearity of the measurement function. Equivalent calculation method can also be established while applied to CKF. Theoretical analysis shows that the strong tracking CKF can extract the thirdorder term information from the residual and thus realize second-order accuracy. After optimizing the strong tracking algorithm process, a Fast Strong Tracking CKF(FSTCKF) is finally established. Two simulation examples show that the novel FSTCKF improves the robustness of traditional CKF while minimizing the algorithm time complexity under various conditions.
基金supported by the National Natural Science Foundation of China (Nos.60934009,60804064,and 30800248)the China Post-doctoral Science Foundation (No.20100471727)the Science and Technology Department of Zhejiang Province,China (No.2009C34016)
文摘Square-root cubature Kalman filter (SCKF) is more effective for nonlinear state estimation than an unscented Kalman filter.In this paper,we study the design of nonlinear filters based on SCKF for the system with one step noise correlation and abrupt state change.First,we give the SCKF that deals with the one step correlation between process and measurement noises,SCKF-CN in short.Second,we introduce the idea of a strong tracking filter to construct the adaptive square-root factor of the prediction error covariance with a fading factor,which makes SCKF-CN obtain outstanding tracking performance to the system with target maneuver or abrupt state change.Accordingly,the tracking performance of SCKF is greatly improved.A universal nonlinear estimator is proposed,which can not only deal with the conventional nonlinear filter problem with high dimensionality and correlated noises,but also achieve an excellent strong tracking performance towards the abrupt change of target state.Three simulation examples with a bearings-only tracking system are illustrated to verify the efficiency of the proposed algorithms.
基金Supported by the National Natural Science Foundation of China (Grant No. 60572027)the Outstanding Young Researchers Foundation of Sichuan Province (Grant No. 03ZQ026-033)+1 种基金the Program for New Century Excellent Talents in University of China (Grant No. NCET-05-0794)the Young Teacher Foundation of Mechanical School (Grant No. MYF0806)
文摘Non-intrusive methods for eye tracking are important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust- ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty in modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and improve the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.
基金Supported by the Basic Research Foundation of Tsinghua National Laboratory for Information Science and Technology (TNList) the National Natural Science Foundation of China (No. 60675002)
文摘The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.
基金the National Natural Science Foundationof China!( No. 697740 2 2 ) the State High-TechDevelopments Plan! ( 863 -5 11-84
文摘A modified Strong Tracking Filter (STF) is used to develop a new approach to sensor fault tolerant control. Generic Model Control (GMC) is used to control the nonlinear process while the process runs normally because of its robust control performance. If a fault occurs in the sensor, a sensor bias vector is then introduced to the output equation of the process model. The sensor bias vector is estimated on line during every control period using the STF. The estimated sensor bias vector is used to develop a fault detection mechanism to supervise the sensors. When a sensor fault occurs, the conventional GMC is switched to a fault tolerant control scheme, which is, in essence, a state estimation and output prediction based GMC. The laboratory experimental results on a three tank system demonstrate the effectiveness of the proposed Sensor Fault Tolerant Generic Model Control (SFTGMC) approach.
基金the National Natural Science Foundation of China(52072155,51707084)the Six Talent Peaks Project in Jiangsu Province(2018-XNYQC-004)+2 种基金the Open Research Subject of Key Laboratory of Automotive Measurement and Control and Safety(QCCK2020-009)the Natural Science Research Project of Jiangsu Higher Education Institutions(19KJB470013)the Young Talent Cultivation Project of Jiangsu University.
文摘An improved cubature Kalman filter(CKF)algorithm for estimating the state of charge of lithium-ion batteries is proposed.This improved algorithm implements the diagonalization decomposition of the covariance matrix and a strong tracking filter.First,a first-order RC equivalent circuit model is first established and verified,whose voltage estimation error is within 1.5%;this confirms that the model can be used to describe the characteristics of a battery.Then the calculation processes of the traditional and proposed CKF algorithms are compared.Subsequently,the improved CKF algorithm is applied to the state of charge estimation under the constant-current discharge and dynamic stress test conditions.The average errors for these two conditions are 0.76%and 1.2%,respectively,and the maximum absolute error is only 3.25%.The results indicate that the proposed method has higher filter stability and estimation accuracy than the extended Kalman filter(EKF),unscented Kalman filter(UKF)and traditional CKF algorithms.Finally,the convergence rates of the above four algorithms are compared,among which the proposed algorithm track the referenced values at the highest speed.