FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and sca...FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and scanning probe microscope were applied to study the magnetic properties, microstructures, morphologies and domain structures of the samples. (FePt)27Ti73 bilayer films were fabricated at various conditions to investigate the effect of Ti on FePt grains. The results show that without Ti matrix layer, FePt films deposited onto the glass substrates are fcc disordered; with addition of Ti matrix layer, FePt/Ti films form a ternary (FePt)27Ti73 alloy possessing fcc and L10 (111) mixed texture. FePt/(FePt)27Ti73 films with perfectly ordered L10(111) structure and unique magnetic properties can be obtained at Ti thickness of 35nm and substrate temperature of 250℃. The maximum coercivity is more than 240kA/m and the squareness ratio is more than 0.9. The obtained results suggest that the granular FePt/(FePt)27Ti73 films can be applicable to ultrahigh-density magnetic recording media.展开更多
The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tigh...The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tight reservoirs and the mechanisms that generate them are of significance in identifying the distribution of high-quality reservoirs and in improving the prediction accuracy of sweet spots in tight oil reservoirs. In this paper, high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) experiments were carried out on samples from the tight reservoirs in the study area. These experimental results were combined with cluster analysis, fractal theory, and microscopic observations to qualitatively and quantitatively evaluate pore types, sizes, and structures. A classification scheme was established that divides the reservoir into four types, based on the microstructure characteristics of samples, and the genetic mechanisms that aided the development of reservoir microstructure were analyzed. The results show that the lower limit for the tight reservoir in the Fengcheng Formation is Φ of 3.5% and K of 0.03 mD. The pore throat size and distribution span gradually decrease from Type I, through Type II and Type III reservoirs to non-reservoirs, and the pore type also evolves from dominantly intergranular pores to intercrystalline pores. The structural trend shows a decrease in the ball-stick pore-throat system and an increase in the branch-like pore-throat system. The dual effects of sedimentation and diagenesis shape the microscopic characteristics of pores and throats. The sorting, roundness, and particle size of the original sediments determine the original physical properties of the reservoir. The diagenetic environment of ‘two alkalinity stages and one acidity stage’ influenced the evolution of pore type and size. Although the cementation of authigenic minerals in the early alkaline environment adversely affected reservoir properties, it also alleviated the damage of the later compaction to some extent. Dissolution in the mid-term acidic environment greatly improved the physical properties of this tight reservoir, making dissolution pores an important reservoir space. The late alkaline environment occurred after large-scale oil and gas accumulation. During this period, the cementation of authigenic minerals had a limited effect on the reservoir space occupied by crude oil. It had a more significant impact on the sand bodies not filled with oil, making them function as barriers.展开更多
Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V ...Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V due to the oxidation effects at high anodic potentials.Herein,we developed asymmetric micro-supercapacitors(AMSCs)based on titanium carbide MXene(Ti_(3)C_(2)Tx)and MXene-MoO_(2) electrodes with an enlarged voltage window of 1.2 V,which is twice wider than that of symmetric MXene MSCs.The 2D-0D MXene-MoO_(2) microelectrode is fabricated by homogenous dispersing zerodimensional(0D)MoO_(2) nanoparticles into MXene layers to impede layers stacking and MoO_(2) nanoparticles aggregation.Notably,the AMSCs delivered good electrochemical performances of areal capacitance of ~19 mF cm^(-2) and volumetric capacitance of 63 F cm^(-3) at a scan rate of 2 mV s^(-1),and high energy density of 9.7 mW h cm^(-3) at a power density of 0.198 W cm^(-3).The AMSCs also presented exceptionally mechanical flexibility under different bending states and excellent cyclic stability,with 88% capacitance retention after 10000 cycles at a discharge current density of 0.5 mA cm^(-2).For practical application,the serially connected AMSCs are fully affordable to power electronics,which is beneficial for soft and wearable power devices.展开更多
Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical struc...Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property,while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators.The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI)reduction and H2 evolution,featured a rate of 0.069 min^(-1) and 1070μmol/(hr•g),respectively,which were 8 times than those of pure 3D-CTP(0.009 min^(−1) and 129μmol/(hr•g)).We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.展开更多
基金Project(10274018) supported by the National Natural Science Foundation of China project(Z200102) supported the KeyFoundation of Hebei Normal University project(2002116) supported the Foundation Education Department of of Hebei Provin
文摘FePt granular films were prepared by direct current facing-target magnetron sputtering system onto glass substrates and subsequently in-situ annealed in vacuum. Vibrating sample magnetometer, X-ray diffraction and scanning probe microscope were applied to study the magnetic properties, microstructures, morphologies and domain structures of the samples. (FePt)27Ti73 bilayer films were fabricated at various conditions to investigate the effect of Ti on FePt grains. The results show that without Ti matrix layer, FePt films deposited onto the glass substrates are fcc disordered; with addition of Ti matrix layer, FePt/Ti films form a ternary (FePt)27Ti73 alloy possessing fcc and L10 (111) mixed texture. FePt/(FePt)27Ti73 films with perfectly ordered L10(111) structure and unique magnetic properties can be obtained at Ti thickness of 35nm and substrate temperature of 250℃. The maximum coercivity is more than 240kA/m and the squareness ratio is more than 0.9. The obtained results suggest that the granular FePt/(FePt)27Ti73 films can be applicable to ultrahigh-density magnetic recording media.
基金supported by a Major Projects grant of the China National Petroleum Corporation(Project No.2021DJ1003).
文摘The tight reservoirs of the Fengcheng Formation at the southern margin of the Mahu Sag have strong heterogeneity due to the diversity in their pore types, sizes, and structures. The microscopic characteristics of tight reservoirs and the mechanisms that generate them are of significance in identifying the distribution of high-quality reservoirs and in improving the prediction accuracy of sweet spots in tight oil reservoirs. In this paper, high-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) experiments were carried out on samples from the tight reservoirs in the study area. These experimental results were combined with cluster analysis, fractal theory, and microscopic observations to qualitatively and quantitatively evaluate pore types, sizes, and structures. A classification scheme was established that divides the reservoir into four types, based on the microstructure characteristics of samples, and the genetic mechanisms that aided the development of reservoir microstructure were analyzed. The results show that the lower limit for the tight reservoir in the Fengcheng Formation is Φ of 3.5% and K of 0.03 mD. The pore throat size and distribution span gradually decrease from Type I, through Type II and Type III reservoirs to non-reservoirs, and the pore type also evolves from dominantly intergranular pores to intercrystalline pores. The structural trend shows a decrease in the ball-stick pore-throat system and an increase in the branch-like pore-throat system. The dual effects of sedimentation and diagenesis shape the microscopic characteristics of pores and throats. The sorting, roundness, and particle size of the original sediments determine the original physical properties of the reservoir. The diagenetic environment of ‘two alkalinity stages and one acidity stage’ influenced the evolution of pore type and size. Although the cementation of authigenic minerals in the early alkaline environment adversely affected reservoir properties, it also alleviated the damage of the later compaction to some extent. Dissolution in the mid-term acidic environment greatly improved the physical properties of this tight reservoir, making dissolution pores an important reservoir space. The late alkaline environment occurred after large-scale oil and gas accumulation. During this period, the cementation of authigenic minerals had a limited effect on the reservoir space occupied by crude oil. It had a more significant impact on the sand bodies not filled with oil, making them function as barriers.
基金financially supported by the Australian Research Council Discovery Program(DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme(DE150101617).
文摘Recently,two-dimensional(2D)transition metal carbides and carbonitrides(MXenes),have shown great potential in micro-supercapacitors(MSCs).However,the maximum voltage output of symmetric MXene MSCs is limited to 0.6 V due to the oxidation effects at high anodic potentials.Herein,we developed asymmetric micro-supercapacitors(AMSCs)based on titanium carbide MXene(Ti_(3)C_(2)Tx)and MXene-MoO_(2) electrodes with an enlarged voltage window of 1.2 V,which is twice wider than that of symmetric MXene MSCs.The 2D-0D MXene-MoO_(2) microelectrode is fabricated by homogenous dispersing zerodimensional(0D)MoO_(2) nanoparticles into MXene layers to impede layers stacking and MoO_(2) nanoparticles aggregation.Notably,the AMSCs delivered good electrochemical performances of areal capacitance of ~19 mF cm^(-2) and volumetric capacitance of 63 F cm^(-3) at a scan rate of 2 mV s^(-1),and high energy density of 9.7 mW h cm^(-3) at a power density of 0.198 W cm^(-3).The AMSCs also presented exceptionally mechanical flexibility under different bending states and excellent cyclic stability,with 88% capacitance retention after 10000 cycles at a discharge current density of 0.5 mA cm^(-2).For practical application,the serially connected AMSCs are fully affordable to power electronics,which is beneficial for soft and wearable power devices.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (No. LR21E080001)the National Natural Science Foundation of China (Nos. 21876156, 52000158, 22076168)+1 种基金the Zhejiang Provincial Ten Thousand Talent Program (No. 2018R52013)the Key Research and Development Plan of Zhajiang Province (No. 2021C03176)
文摘Herein,a novel direct Z-scheme photocatalyst was accomplished by hybridization of 0D MoS2 quantum dots(MSQDs)and 3D honeycomb-like conjugated triazine polymers(CTP)(namely,CTP-MSQD).The unique 0D/3D hierarchical structure significantly enhanced the exposure of active sites and light harvesting property,while the formed p-n junction enabled the direct strong interface coupling without the necessity of any mediators.The optimized CTP-MSQD3 exhibited continuously increased visible-light-driven photocatalytic activity and strong durability both in Cr(VI)reduction and H2 evolution,featured a rate of 0.069 min^(-1) and 1070μmol/(hr•g),respectively,which were 8 times than those of pure 3D-CTP(0.009 min^(−1) and 129μmol/(hr•g)).We believe that this work provides a promising photocatalyst system that combines a 0D/3D hierarchical structure and a Z-scheme charge flow for efficient and stable photocatalytic conversion.