RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission ele...RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission electron microscope(TEM) hot stage, and were studied by Xray diffraction(XRD) after annealing under vacuum. It was found that, annealing at temperature≤200 ℃ for a long time(~300 min), the amorphous state and the modulated structure of asdeposited films remained basically unchanged. It is suggested that RE/Fe multilayers are stable at temperature up to 200 ℃.〖HS*2]展开更多
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ...Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems.展开更多
Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is de...Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti b...The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.展开更多
The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the s...The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the similarity and diversity of vector. The comprehensive opinions of expert panel are quantitatively obtained by considering the effect ofcredit degree. According to the geological structural setting, the Bohai Sea is di- vided into twelve assessment zones of structural stability by non-uniform element method. The structural stability grade of each zone is obtained on the basis of the latest geophysical data, earthquake statistical data, and the information of fault activities, current stress field and crustal deformation. The results show that there are one relatively stable area, three relatively sub-stable areas, six relatively sub-unstable areas and two relatively unstable areas. The assessment results of non-uniform element method are very close with those of uniform grid method with size of 0.25 in longitude direction and 0.14 in latitude direction. However the workload of non-uniform element method is only 1 / 16 of the latter. Compared with traditional assessment methods of structural stability, a more objective and reliable assessment result can be obtained by combining non-uniform element method and AHP-GDM model.展开更多
The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamon...The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil ceils. The diffraction data for types II (slI) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sl methane hydrate transforms to the sll phase at 120 MPa, and then to the sH phase at 600 MPa. The slI methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.展开更多
The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and firs...The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and first-principles calculations under high pressure. The x-ray diffraction results show that the structure of AlB2-type MnB2 remains stable up to 42.6 GPa. From the equation of state of MnB2, we obtained a bulk modulus value of 169.9±3.7 GPa with a fixed pressure derivative of 4, which indicates that AlB2-type MnB2 is a hard and incompressible material. The electrical resistance undergoes a transition at about 19.3 GPa, which can be explained by a transition of manganese 3d electrons from localization to delocalization under high pressure.展开更多
We pioneered a study about how the geometric relationship of single-walled carbon nanotubes(SWCNT) is influenced by curvature factor and non-planar geometry factor in cylindrical coordinate system based on the assumpt...We pioneered a study about how the geometric relationship of single-walled carbon nanotubes(SWCNT) is influenced by curvature factor and non-planar geometry factor in cylindrical coordinate system based on the assumption of complete symmetry. The bond length and angle of every carbon-carbon bonds are determined by using the principle of the minimum energy. The results of the paper include(1) From the calculation result, the symmetry breaking appears for chiral carbon nanotubes, while the part symmetry appears for achiral carbon nanotubes with increasing curvature.(2) The synergistic effect of bond lengths and bond angles is first found.(3) We conclude that the influence of non-planar geometry factor can be completely ignored on bond lengths and bond angles when the curvature parameter has been included in the model.(4)The two fractal dimensions are given from the nanoscale to the macroscale for zigzag topology and armchair topology respectively. Fractal dimensions of SWCNT show special characteristics, varying with the length of SWCNT until the lengths approach infinity. The close and inevitable correlations among curvature, symmetry breaking and stability of SWCNTs can be summed up as: the increase of curvature causes symmetry breaking,and such symmetry breaking will further reduce the structural stability.展开更多
To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secon...To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secondary structure is still unclear. Here we perform molecular simulations on a series of helical structures. Our data show that the dissociation energy of the helical structure is related to the preference of amino acids, and the electrostatic repulsion of the residue i and i + 3/4 with the same sign of charge destabilizes the alpha helix.展开更多
In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of t...In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.展开更多
The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a...The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is展开更多
AB5-based hydrogen storage thin fdms (LaNi4.25Al0.75), deposited on Cu substrate by dc magnetron sputtering were investigated in this study. X-ray diffraction (XRD) revealed that the microstructure of the layer wa...AB5-based hydrogen storage thin fdms (LaNi4.25Al0.75), deposited on Cu substrate by dc magnetron sputtering were investigated in this study. X-ray diffraction (XRD) revealed that the microstructure of the layer was in crystal form. SEM and AFM analyses proved that the film appeared to be rather rough with numerous randomly sized pores of approximately 15-40 in nm diameter. Structural stability of the film was examined by the combined analyses of DSC, XRD, and SEM, which indicated that this film maintained its structural stability below 500 K or so, and a network structure was observed on the film after being heated at 700 K for 30 min. Electrochemical hydrogen-storage properties of the films were investigated by simulated battery tests. It was found that single-layered LaNi4.25A10.75 film exhibited electrochemical hydrogen-storage properties similar to typical AB5 alloys in bulk, and the maximum discharge capacity of the film was about 220 mAh/g. After 20 charge/discharge cycles, small needle-shaped aluminium oxide was formed on some fractions of the film surface.展开更多
In order to study the phase transformation between 1nm manganate and 0.7nm manganate, a series of Slum Me^(2+) manganates were made after the synthetic 1nm Na^+ manganate substituted with different kinds of divalent c...In order to study the phase transformation between 1nm manganate and 0.7nm manganate, a series of Slum Me^(2+) manganates were made after the synthetic 1nm Na^+ manganate substituted with different kinds of divalent cations. The X-ray diffraction analysis of wet S1nm Me^(2+) manganates after 24 h room temperature dry showed that their basal d-spacing had been changed, indicating that there was phase transformation between 1nm and 0.7nm manganates. Take 1nm manganates with unstable structure collapsed into 0. 7nm manganate by losing one interlayer OH-H_2O, while those with stable structure still retained the 1nm d-spacing. This factor reminds us that the manganese nodule samples must be kept in wet condition to avoid the misleading results. The structural stabdity of 1nn manganate is mainly controlled by the interlayer divalent cations. There is a possitive correlation between the amount of cations in the interlayer and the structural stability, while the capacity of different canons in stabilizing the structure of 1nm manganate is as follows: Ni > Cu > Co > Zn > Ca>Mg > Na.展开更多
By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice i...By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice is verified through phononmode analysis and room temperature molecular dynamics simulations. The carbon star lattice is found to be metallic due to the large states across the Fermi-level contributed by Pz orbital. Furthermore, the nanoribbons are also found to be metallic and no spin polarization occurs, except for the narrowest nanoribbon with one C12 ring, which has a ferromagnetic ground state. Our results show that carbon star lattice monolayer and nanoribbons have rich electronic properties with great potential in future electronic nanodevices.展开更多
The morphologies and structures of Pt–Pd bimetallic nanoparticles determine their chemical and physical properties.Therefore, a fundamental understanding of their morphologies and structural stabilities is of crucial...The morphologies and structures of Pt–Pd bimetallic nanoparticles determine their chemical and physical properties.Therefore, a fundamental understanding of their morphologies and structural stabilities is of crucial importance to their applications. In this article, we have performed Monte Carlo simulations to systematically explore the structural stability and structural features of Pt–Pd alloy nanoparticles. Different Pt/Pd ratios, and particle sizes and shapes were considered.The simulated results reveal that the truncated octahedron, which has the remarkably lowest energy among all the considered shapes, exhibits the best structural stability while the tetrahedron has the worst invariably. Furthermore, all the structures of Pt–Pd alloy nanoparticles present Pd-rich in the outmost layer but Pt-rich in the sub-outmost layer. Especially, atomic distribution and chemical short-range order parameter were applied to further characterize the structural features of Pt–Pd alloy nanoparticles. This study provides a significant insight not only into the structural stability of Pt–Pd alloy nanoparticles with different compositions, and particle sizes and shapes but also to the design of bimetallic nanoparticles.展开更多
In ordinary differential equations, structural stability of hyperbolic fixed points is a classical result, but the proof of this result in [2] has same small mistake. In this paper,we will correct the above mistake by...In ordinary differential equations, structural stability of hyperbolic fixed points is a classical result, but the proof of this result in [2] has same small mistake. In this paper,we will correct the above mistake by using the Hartman theorem and its idea.展开更多
The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic...The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fego Ni10 and Fe80 Ni20 consist of a single α(bcc) phase, Fe30 Ni30 powders are a single γ(fcc), and for Fe65 Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80 Ni20 powders annealed at 680℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.展开更多
The reliable functioning of ion channels should be closely related to their structural stability. The selectivity filter in the KcsA potassium channel possesses four stable ion binding sites that can coordinate nearly...The reliable functioning of ion channels should be closely related to their structural stability. The selectivity filter in the KcsA potassium channel possesses four stable ion binding sites that can coordinate nearly fully dehydrated ions, whereas only two of such binding sites exist in the non-selective NaK channel, and none of them is found in the NavAb sodium channel. Here we show that the stability of the selectivity filters in these tetrameric cation channels is inversely correlated with the number of stable binding sites by extensive molecular dynamics simulations. While the presence of coordinated ions is crucial for the selectivity filters of the KcsA and NaK channels to stabilize the conformations in their crystal structures, the selectivity filter of the NavAb channel shows higher stability, independent of the presence of ions. We further show that the distinct repulsive electrostatic interactions between negatively charged oxygen atoms in the selectivity filter which form the stable binding sites are responsible for the different stability of these cation channels. The hydrogen bonding networks between residues in the selectivity filter and its adjacent pore helix also play an important role in maintaining stability. Together, these results provide important mechanistic insights into the structural stability of the selectivity filters in typical cation channels.展开更多
文摘RE/Fe multilayer films were prepared by alternate deposition of the two elements onto Si or NaCl single crystal substrates(RE=Dy, Y). The changes in structure of the films were analyzed in situ on the transmission electron microscope(TEM) hot stage, and were studied by Xray diffraction(XRD) after annealing under vacuum. It was found that, annealing at temperature≤200 ℃ for a long time(~300 min), the amorphous state and the modulated structure of asdeposited films remained basically unchanged. It is suggested that RE/Fe multilayers are stable at temperature up to 200 ℃.〖HS*2]
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.
基金Korea Institute of Materials Science,Grant/Award Number:PNK9370National Research Foundation of Korea,Grant/Award Numbers:NRF-2021R1A2C1014280,NRF-2022R1C1C1011058,NRF-2022M3H446401037201Korea Institute of Science and Technology,Grant/Award Number:2E32581-23-092。
文摘Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems.
文摘Fiber is highly escapable in conventional slickwater,making it difficult to form fiber-proppant agglomerate with proppant and exhibit limited effectiveness.To solve these problems,a novel structure stabilizer(SS)is developed.Through microscopic structural observations and performance evaluations in indoor experiments,the mechanism of proppant placement under the action of the SS and the effects of the SS on proppant placement dimensions and fracture conductivity were elucidated.The SS facilitates the formation of robust fiber-proppant agglomerates by polymer,fiber,and quartz sand.Compared to bare proppants,these agglomerates exhibit reduced density,increased volume,and enlarged contact area with the fluid during settlement,leading to heightened buoyancy and drag forces,ultimately resulting in slower settling velocities and enhanced transportability into deeper regions of the fracture.Co-injecting the fiber and the SS alongside the proppant into the reservoir effectively reduces the fiber escape rate,increases the proppant volume in the slickwater,and boosts the proppant placement height,conveyance distance and fracture conductivity,while also decreasing the proppant backflow.Experimental results indicate an optimal SS mass fraction of 0.3%.The application of this SS in over 80 wells targeting tight gas,shale oil,and shale gas reservoirs has substantiated its strong adaptability and general suitability for meeting the production enhancement,cost reduction,and sand control requirements of such wells.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金International Cooperation Project of the Ministry of Science and Technology of China(No.2014DFA50320)National Natural Science Foundation of China(Nos.51674226,51574207,51574206,51274175)+1 种基金International Science and Technology Cooperation Project of Shanxi Province(No.2015081041)Research Project Supported by Shanxi Scholarship Council of China(No.2016-Key 2)
文摘The structural stability, elastic and electronic properties under pressure at 0 K for β-Ti have been investigated by per-forming first-principles calculations. With the increase of pressure, the structure of β-Ti becomes stabler, which is further con-firmed by the calculation for density of state (DOS). The phase transition pressure of is about 64. 3 GPa, which is consist-ent with other theoretical predictions (63. 7 GPa) and the experimental result (50 GPa). The pressure dependence of elastic constants shows that the low-pressure limit for a mechanically stable β-Ti is about 50 GPa with low Young?s modulus value of about 30. 01 GPa, which approaches the value of a human bone (30 GPa). In addition, the pressure dependence of bulk modu-lus B, shear modulus G, Young’s modulus E,Poisson’s ratio σ,aggregate sound velocities,and ductility/brittleness under different pressures were also discussed. B, G and E ascend monotonously with increasing pressure, while a descends. β-Ti re-mains ductile by analysis of B/G under considered pressures.
基金The National High Technology Research and Development Program of China(863Program)under contract Nos 2009AA093401 and 2010AA09Z302the National Natural Science Foundation of China(Key Program)under contract No.90814011+1 种基金Special Funds for Postdoctoral Innovative Projects of Shandong Province under contract No.201102008the Fundamental Research Funds for the Central Universities under contract No.11CX04037A
文摘The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the similarity and diversity of vector. The comprehensive opinions of expert panel are quantitatively obtained by considering the effect ofcredit degree. According to the geological structural setting, the Bohai Sea is di- vided into twelve assessment zones of structural stability by non-uniform element method. The structural stability grade of each zone is obtained on the basis of the latest geophysical data, earthquake statistical data, and the information of fault activities, current stress field and crustal deformation. The results show that there are one relatively stable area, three relatively sub-stable areas, six relatively sub-unstable areas and two relatively unstable areas. The assessment results of non-uniform element method are very close with those of uniform grid method with size of 0.25 in longitude direction and 0.14 in latitude direction. However the workload of non-uniform element method is only 1 / 16 of the latter. Compared with traditional assessment methods of structural stability, a more objective and reliable assessment result can be obtained by combining non-uniform element method and AHP-GDM model.
基金HPSynC is supported as part of EFree,an EnergyFrontier Research Center funded by the U.S.Department of Energy(DOE),Office of Science, Office of Basic Energy Sciences(BES) under Award Number DE-SC0001057HPCAT is supported by CIW,CDAC,UNLV and LLNL through funding from DOE-NNSA,DOE-BES and NSFAPS is supported by DOE-BES,under Contract No.DE-AC02-06CH 11357
文摘The structural stability of methane hydrate under pressure at room temperature was examined by both in-situ single-crystal and powder X-ray diffraction techniques on samples with structure types I, II, and H in diamond-anvil ceils. The diffraction data for types II (slI) and H (sH) were refined to the known structures with space groups Fd3m and P63/mmc, respectively. Upon compression, sl methane hydrate transforms to the sll phase at 120 MPa, and then to the sH phase at 600 MPa. The slI methane hydrate was found to coexist locally with sI phase up to 500 MPa and with sH phase up to 600 MPa. The pure sH structure was found to be stable between 600 and 900 MPa. Methane hydrate decomposes at pressures above 3 GPa to form methane with the orientationally disordered Fm3m structure and ice VII (Pn3m). The results highlight the role of guest (CH4)-host (H2O) interactions in the stabilization of the hydrate structures under pressure.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB808200), the Program for Changjiang Scholars and Innovative Re- search Team in University, China (Grant No. IRT1132), the National Natural Science Foundation of China (Grant Nos. 51032001, 11074090, 10979001, and 51025206), and the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences (Grant No. DE-AC02-98CH 10886).
文摘The structural stability and electrical properties of AlB2-type MnB2 were studied based on high pressure angledispersive x-ray diffraction, in situ electrical resistivity measured in a diamond anvil cell(DAC) and first-principles calculations under high pressure. The x-ray diffraction results show that the structure of AlB2-type MnB2 remains stable up to 42.6 GPa. From the equation of state of MnB2, we obtained a bulk modulus value of 169.9±3.7 GPa with a fixed pressure derivative of 4, which indicates that AlB2-type MnB2 is a hard and incompressible material. The electrical resistance undergoes a transition at about 19.3 GPa, which can be explained by a transition of manganese 3d electrons from localization to delocalization under high pressure.
基金National Natural Science Foundation of China (No. 10602028)Student Research Train Program of BeiHang University
文摘We pioneered a study about how the geometric relationship of single-walled carbon nanotubes(SWCNT) is influenced by curvature factor and non-planar geometry factor in cylindrical coordinate system based on the assumption of complete symmetry. The bond length and angle of every carbon-carbon bonds are determined by using the principle of the minimum energy. The results of the paper include(1) From the calculation result, the symmetry breaking appears for chiral carbon nanotubes, while the part symmetry appears for achiral carbon nanotubes with increasing curvature.(2) The synergistic effect of bond lengths and bond angles is first found.(3) We conclude that the influence of non-planar geometry factor can be completely ignored on bond lengths and bond angles when the curvature parameter has been included in the model.(4)The two fractal dimensions are given from the nanoscale to the macroscale for zigzag topology and armchair topology respectively. Fractal dimensions of SWCNT show special characteristics, varying with the length of SWCNT until the lengths approach infinity. The close and inevitable correlations among curvature, symmetry breaking and stability of SWCNTs can be summed up as: the increase of curvature causes symmetry breaking,and such symmetry breaking will further reduce the structural stability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11247010,11175055,11475053 and 11347017the Natural Science Foundation for Distinguished Young Scholars of Hebei Province under Grant No C2015202340+1 种基金the Natural Science Foundation of Hebei Province under Grant Nos C2012202079 and C201400305the Scientific Innovation Fund for Excellent Young Scientists of Hebei University of Technology under Grant No 2015010
文摘To accomplish their functions, proteins have to achieve different conformations accompanied by conformational transitions. However, the relationship between the preference of amino acids and the stability of the secondary structure is still unclear. Here we perform molecular simulations on a series of helical structures. Our data show that the dissociation energy of the helical structure is related to the preference of amino acids, and the electrostatic repulsion of the residue i and i + 3/4 with the same sign of charge destabilizes the alpha helix.
基金Supported by the National Excellent Youth Science Foundation of China (No.79725002)
文摘In this paper, based on Cobb-Douglas production function, the structural stability of the supply chain system are analyzed by employing Lyapunov criteria. That the supply chain system structure, with the variance of the rate of re-production input funding, becomes unstable is proved. Noticeably, the solutions shows that when the optimal combination of input parameter element, the qualitative properties of supply chain system change and the supply chain system becomes unstable.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274030 and 11474281
文摘The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is
文摘AB5-based hydrogen storage thin fdms (LaNi4.25Al0.75), deposited on Cu substrate by dc magnetron sputtering were investigated in this study. X-ray diffraction (XRD) revealed that the microstructure of the layer was in crystal form. SEM and AFM analyses proved that the film appeared to be rather rough with numerous randomly sized pores of approximately 15-40 in nm diameter. Structural stability of the film was examined by the combined analyses of DSC, XRD, and SEM, which indicated that this film maintained its structural stability below 500 K or so, and a network structure was observed on the film after being heated at 700 K for 30 min. Electrochemical hydrogen-storage properties of the films were investigated by simulated battery tests. It was found that single-layered LaNi4.25A10.75 film exhibited electrochemical hydrogen-storage properties similar to typical AB5 alloys in bulk, and the maximum discharge capacity of the film was about 220 mAh/g. After 20 charge/discharge cycles, small needle-shaped aluminium oxide was formed on some fractions of the film surface.
文摘In order to study the phase transformation between 1nm manganate and 0.7nm manganate, a series of Slum Me^(2+) manganates were made after the synthetic 1nm Na^+ manganate substituted with different kinds of divalent cations. The X-ray diffraction analysis of wet S1nm Me^(2+) manganates after 24 h room temperature dry showed that their basal d-spacing had been changed, indicating that there was phase transformation between 1nm and 0.7nm manganates. Take 1nm manganates with unstable structure collapsed into 0. 7nm manganate by losing one interlayer OH-H_2O, while those with stable structure still retained the 1nm d-spacing. This factor reminds us that the manganese nodule samples must be kept in wet condition to avoid the misleading results. The structural stabdity of 1nn manganate is mainly controlled by the interlayer divalent cations. There is a possitive correlation between the amount of cations in the interlayer and the structural stability, while the capacity of different canons in stabilizing the structure of 1nm manganate is as follows: Ni > Cu > Co > Zn > Ca>Mg > Na.
基金supported by the National Natural Science Foundation of China(Grant No.11274356)the Ministry of Environmental Protection of China(Grant Nos.200909086 and 201109037)
文摘By means of the first-principles calculations, we have investigated the structural stability and electronic properties of carbon star lattice monolayer and nanoribbons. The phase stability of the carbon star lattice is verified through phononmode analysis and room temperature molecular dynamics simulations. The carbon star lattice is found to be metallic due to the large states across the Fermi-level contributed by Pz orbital. Furthermore, the nanoribbons are also found to be metallic and no spin polarization occurs, except for the narrowest nanoribbon with one C12 ring, which has a ferromagnetic ground state. Our results show that carbon star lattice monolayer and nanoribbons have rich electronic properties with great potential in future electronic nanodevices.
基金supported by the National Natural Science Foundation of China(Grant No.51271156)the Natural Science Foundation of Fujian Province,China(Grant Nos.2013J01255 and 2013J06002)
文摘The morphologies and structures of Pt–Pd bimetallic nanoparticles determine their chemical and physical properties.Therefore, a fundamental understanding of their morphologies and structural stabilities is of crucial importance to their applications. In this article, we have performed Monte Carlo simulations to systematically explore the structural stability and structural features of Pt–Pd alloy nanoparticles. Different Pt/Pd ratios, and particle sizes and shapes were considered.The simulated results reveal that the truncated octahedron, which has the remarkably lowest energy among all the considered shapes, exhibits the best structural stability while the tetrahedron has the worst invariably. Furthermore, all the structures of Pt–Pd alloy nanoparticles present Pd-rich in the outmost layer but Pt-rich in the sub-outmost layer. Especially, atomic distribution and chemical short-range order parameter were applied to further characterize the structural features of Pt–Pd alloy nanoparticles. This study provides a significant insight not only into the structural stability of Pt–Pd alloy nanoparticles with different compositions, and particle sizes and shapes but also to the design of bimetallic nanoparticles.
文摘In ordinary differential equations, structural stability of hyperbolic fixed points is a classical result, but the proof of this result in [2] has same small mistake. In this paper,we will correct the above mistake by using the Hartman theorem and its idea.
文摘The structural evolution and stability of Fe100-xNix(x= 10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fego Ni10 and Fe80 Ni20 consist of a single α(bcc) phase, Fe30 Ni30 powders are a single γ(fcc), and for Fe65 Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80 Ni20 powders annealed at 680℃ exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.
文摘The reliable functioning of ion channels should be closely related to their structural stability. The selectivity filter in the KcsA potassium channel possesses four stable ion binding sites that can coordinate nearly fully dehydrated ions, whereas only two of such binding sites exist in the non-selective NaK channel, and none of them is found in the NavAb sodium channel. Here we show that the stability of the selectivity filters in these tetrameric cation channels is inversely correlated with the number of stable binding sites by extensive molecular dynamics simulations. While the presence of coordinated ions is crucial for the selectivity filters of the KcsA and NaK channels to stabilize the conformations in their crystal structures, the selectivity filter of the NavAb channel shows higher stability, independent of the presence of ions. We further show that the distinct repulsive electrostatic interactions between negatively charged oxygen atoms in the selectivity filter which form the stable binding sites are responsible for the different stability of these cation channels. The hydrogen bonding networks between residues in the selectivity filter and its adjacent pore helix also play an important role in maintaining stability. Together, these results provide important mechanistic insights into the structural stability of the selectivity filters in typical cation channels.