In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of method...In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.展开更多
基金supported by the National Natural Science Foundation of China(31271837 and 31471704)the major project of Fujian Industry-Academy-Research Cooperation(2013N5003)+1 种基金the Natural Science Foundation(2011J0101)of Fujian Province,the Science and Technology Program under Fujian Provincial Department of Education(JA13439 and JA13440)the Science and Technology Program under Fujian Provincial Department of Forestry(20135)
文摘In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.