期刊文献+
共找到1,206篇文章
< 1 2 61 >
每页显示 20 50 100
On the Impact of Manufacturing Uncertainty in Structural Health Monitoring of Composite Structures: A Signal to Noise Weighted Neural Network Process
1
作者 Hessamodin Teimouri Abbas S. Milani +1 位作者 Rudolf Seethaler Amir Heidarzadeh 《Open Journal of Composite Materials》 2016年第1期28-39,共12页
This article investigates the potential impact of manufacturing uncertainty in composite structures here in the form of thickness variation in laminate plies, on the robustness of commonly used Artificial Neural Netwo... This article investigates the potential impact of manufacturing uncertainty in composite structures here in the form of thickness variation in laminate plies, on the robustness of commonly used Artificial Neural Networks (ANN) in Structural Health Monitoring (SHM). Namely, the robustness of an ANN SHM system is assessed through an airfoil case study based on the sensitivity of delamination location and size predictions, when the ANN is imposed to noisy input. In light of the observed poor performance of the original network, even when its architecture was carefully optimized, it had been proposed to weigh the input layer of the ANN by a set of signal-to-noise (SN) ratios and then trained the network. Both damage location and size predictions of the latter SHM approach were increased to above 90%. Practical aspects of the proposed robust SN-ANN SHM have also been discussed. 展开更多
关键词 composite structures Manufacturing Uncertainties structural Health Monitoring Artificial Neural networks Signal-to-Noise Weighting
下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:13
2
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
下载PDF
Fabrication and abrasive wear properties of metal matrix composites reinforced with three-dimensional network structure 被引量:2
3
作者 WANG Shouren GENG Haoran +3 位作者 LI Kunshan SONG Bo WANG Yingzi HUI Linhai 《Rare Metals》 SCIE EI CAS CSCD 2006年第6期671-679,共9页
Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-por... Reticulated polyurethane was chosen as the preceramic material for preparing the porous preform using the replication process. The immersing and sintering processes were each performed twice for fabricating a high-porosity and super-strong skeleton. The aluminum magnesium matrix composites reinforced with three-dimensional network structure were prepared using the infiltration technique by pressure assisting and vacuum driving. Light interfacial reactions have played a profitable role in most of the ceramic-metal systems. The metal matrix composites interpenetrated with the ceramic phase have a higher wear resistance than the metal matrix phase. The volume fraction of ceramic reinforcement has a significant effect on the abrasive wear, and the wear rate can be decreased with the increase of the volume fraction of reinforcement. 展开更多
关键词 metal matrix composites INFILTRATION fficdon and wear three dimensional network structure MICROstructure
下载PDF
Preparation and electrochemical properties of LiFePO_4/C composite with network structure for lithium ion batteries 被引量:12
4
作者 陈晗 于文志 +1 位作者 韩绍昌 徐仲榆 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第5期951-956,共6页
The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray d... The bare LiFePO4 and LiFePO4/C composites with network structure were prepared by solid-state reaction. The crystalline structures, morphologies and specific surface areas of the materials were investigated by X-ray diffractometry(XRD), scanning electron microscopy(SEM) and multi-point brunauer emmett and teller(BET) method. The results show that the LiFePO4/C composite with the best network structure is obtained by adding 10% phenolic resin carbon. Its electronic conductivity increases to 2.86×10-2 S/cm. It possesses the highest specific surface area of 115.65 m2/g, which exhibits the highest discharge specific capacity of 164.33 mA·h/g at C/10 rate and 149.12 mA·h/g at 1 C rate. The discharge capacity is completely recovered when C/10 rate is applied again. 展开更多
关键词 电化学 锂电池 LIFEPO4 网络结构 复合物
下载PDF
Parameter Estimation and Topology Identification of Uncertain General Fractional-order Complex Dynamical Networks with Time Delay 被引量:4
5
作者 Xiaojuan Chen Jun Zhang Tiedong Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期295-303,共9页
Complex networks have attracted much attention from various fields of sciences and engineering in recent years. However, many complex networks have various uncertain information, such as unknown or uncertain system pa... Complex networks have attracted much attention from various fields of sciences and engineering in recent years. However, many complex networks have various uncertain information, such as unknown or uncertain system parameters and topological structure, which greatly affects the system dynamics. Thus, the parameter estimation and structure identification problem has theoretical and practical importance for uncertain complex dynamical networks. This paper investigates identification of unknown system parameters and network topologies in uncertain fractional-order complex network with time delays (including coupling delay and node delay). Based on the stability theorem of fractional-order differential system and the adaptive control technique, a novel and general method is proposed to address this challenge. Finally two representative examples are given to verify the effectiveness of the proposed approach. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Complex networks structure (composition) Time delay topology Uncertainty analysis
下载PDF
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model 被引量:6
6
作者 Jun Yan Zunyi Duan +1 位作者 Erik Lund Guozhong Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第3期430-441,共12页
This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the ... This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultralight design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries. 展开更多
关键词 composite frame structure Multi-scale optimization topology optimization Fiber winding angle structural compliance
下载PDF
Microstructures and properties of Cu/Ag(Invar) composites fabricated by powder metallurgy 被引量:1
7
作者 Xin ZHANG Dan WU +3 位作者 Lei YANG Chang-dong SHI Yu-cheng WU Wen-ming TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第8期1759-1766,共8页
The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The... The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites. 展开更多
关键词 Cu/Invar composite Ag barrier layer SINTERING thermo-mechanical treatment 3D network structure mechanical properties thermal properties
下载PDF
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:2
8
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 Orthotropic continuous structures Hybrid carbon networks Carbon/polymer composites Thermal interface materials
下载PDF
A stepwise optimization method for topology structure of fluid machinery network
9
作者 Wei Gao Xuliang Jing +3 位作者 Jing Chen Hongxiong Li Yubin Sun Dongyuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS 2024年第11期35-45,共11页
The circulating water system is widely used as the cooling system in the process industry,which has the characteristics of high water and power consumption,and its energy consumption level has an important impact on t... The circulating water system is widely used as the cooling system in the process industry,which has the characteristics of high water and power consumption,and its energy consumption level has an important impact on the economic performance of the whole system.Pump network and water turbine network constitute the work network of the circulating water system,that is,the fluid machinery network.Based on the previous studies,this paper proposes a stepwise method to optimize the fluid machinery network,that is,to optimize the network structure by using the recoverable pressure-head curve of the branch,and consider the recovery of adjustable resistance at the valve of each branch,so as to further reduce energy consumption and water consumption.The calculation result of the case shows that the topology structure optimization can further reduce the operation cost and the annual capital cost on the basis of the fixed structure optimization,and the total annualized cost can be reduced by 30.04%.The optimization result of different flow shows that both the pump network and the water turbine network tend to series structure at a low flow rate whereas to parallel structure at a high flow rate. 展开更多
关键词 Fluid machinery network Recoverable pressure head topology structure Model Optimization Systems engineering
下载PDF
An efficient reliability evaluation method for industrial wireless sensor networks 被引量:4
10
作者 乐英高 李建清 +1 位作者 樊鹤红 秦钦 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期195-200,共6页
Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluati... Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs. 展开更多
关键词 wireless sensor networks topology structure reliability evaluation CONNECTIVITY AVAILABILITY
下载PDF
Calculation connectivity reliability of road networks based on recursive decomposition arithmetic 被引量:2
11
作者 潘艳荣 邓卫 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期85-89,共5页
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i... In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity. 展开更多
关键词 recursive decomposition arithmetic road network connectivity reliability disjoint minipath topological structure
下载PDF
Analytical and Experimental Study on Complex Compressed Air Pipe Network 被引量:4
12
作者 GAI Yushou CAI Maolin SHI Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第5期1023-1029,共7页
To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the nu... To analyze the working characteristics of complex compressed air networks, numerical methods are widely used which are based on finite element technology or intelligent algorithms. However, the effectiveness of the numerical methods is limited. In this paper, to provide a new method to optimize the design and the air supply strategy of the complex compressed air pipe network, firstly, a novel method to analyze the topology structure of the compressed air flow in the pipe network is initially proposed. A matrix is used to describe the topology structure of the compressed air flow. Moreover, based on the analysis of the pressure loss of the pipe network, the relationship between the pressure and the flow of the compressed air is derived, and a prediction method of pressure fluctuation and air flow in a segment in a complex pipe network is proposed. Finally, to inspect the effectiveness of the method, an experiment with a complex network is designed. The pressure and the flow of airflow in the network are measured and studied. The results of the study show that, the predicted results with the proposed method have a good consistency with the experimental results, and that verifies the air flow prediction method of the complex pipe network. This research proposes a new method to analyze the compressed air network and a prediction method of pressure fluctuation and air flow in a segment, which can predicate the fluctuation of the pressure according to the flow of compressed air, and predicate the fluctuation of the flow according to the pressure in a segment of a complex pipe network. 展开更多
关键词 compressed air pipeline network topology structure flow prediction topology
下载PDF
Vulnerability analysis of multimodal transport networks based on complex network theory 被引量:9
13
作者 Chen Jing Zhang Yong Liu Lei 《Journal of Southeast University(English Edition)》 EI CAS 2021年第2期209-215,共7页
To explore the structural characteristics and vulnerability of multimodal transport networks,this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network t... To explore the structural characteristics and vulnerability of multimodal transport networks,this study identifies the structural characteristics of a multimodal transport network on the basis of the complex network theory.Key nodes are clarified from the analysis of the structural characteristics.The characteristic path length and percentage of the largest subgraph are applied to analyze the vulnerability of the multimodal transport network after random and intentional attacks on the nodes.The network of a multimodal transport company is taken as an example in the empirical analysis.Results show that with more than ten nodes under a random attack,the percentage of the largest subgraph is less than 20%,and the characteristic path length is less than 2.The same performance is observed for more than seven nodes under an intentional attack.The multimodal transport network is more vulnerable under an international attack against key nodes.The results of the topology and node failure under random or intentional attacks would support the management of the multimodal transport network.Suggestions for the emergency transportation organization of enterprises under attacks are proposed accordingly.These suggestions should help improve network invulnerability and recovery from node failure. 展开更多
关键词 multimodal transport topology structure VULNERABILITY complex network
下载PDF
One-pot synthesis of Sb-Fe-carbon-fiber composites with in situ catalytic growth of carbon fibers 被引量:2
14
作者 Jiart Xie Wen-tao Song Gao-shao Cao Xin-bing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期542-548,共7页
A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-C... A Sb-Fe-carbon-fiber (CF) composite was prepared by a chemical vapor deposition (CVD) method with in situ growth of CFs us- ing Sb203/Fe2O3 as the precursor and acetylene (C2H2) as the carbon source. The Sb-Fe-CF composite was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), and its electrochemical per- formance was investigated by galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The Sb-Fe-CF composite shows a better cycling stability than the Sb-amorphous-carbon composite prepared by the same CVD method but using Sb2O3 as the precur- sor. Improvements in cycling stability of the Sb-Fe-CF composite can be attributed to the formation of three-dimensional network structure by CFs, which can connect Sb particles firmly. In addition, the CF layer can buffer the volume change effectively. 展开更多
关键词 composite materials antimony alloys carbon fibers chemical vapor deposition catalytic growth network structures LITHIUMBATTERIES anodes
下载PDF
Three-dimensional spatial structure of the macro-pores and flow simulation in anthracite coal based on X-ray μ-CT scanning data 被引量:3
15
作者 Hui-Huang Fang Shu-Xun Sang Shi-Qi Liu 《Petroleum Science》 SCIE CAS CSCD 2020年第5期1221-1236,共16页
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr... The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest. 展开更多
关键词 X-rayμ-CT Representative elementary volume Pore network model Geometric and topological structures Flow simulation COMSOL
下载PDF
Brain networks modeling for studying the mechanism underlying the development of Alzheimer’s disease 被引量:3
16
作者 Shuai-Zong Si Xiao Liu +2 位作者 Jin-Fa Wang Bin Wang Hai Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1805-1813,共9页
Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patien... Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs). 展开更多
关键词 nerve regeneration Alzheimer’s disease graph theory functional magnetic resonance imaging network model link prediction naive Bayes topological structures anatomical distance global efficiency local efficiency neural regeneration
下载PDF
Nano-size carbide-reinforced Ni matrix composite prepared by selective laser melting 被引量:2
17
作者 Rui Wang Guoliang Zhu +6 位作者 Chao Yang Wei Wang Donghong Wang Anping Dong Da Shu Liang Zhang Baode Sun 《Nano Materials Science》 CAS 2020年第4期316-322,共7页
Thermally stable nano-size ceramic particles are the preferred reinforcements for superalloys as they improve the alloys'microstructural stability and high-temperature properties.In this work,very dense and crack-... Thermally stable nano-size ceramic particles are the preferred reinforcements for superalloys as they improve the alloys'microstructural stability and high-temperature properties.In this work,very dense and crack-free carbidereinforced GTD222(nickel-based superalloy)composites were prepared via selective laser melting(SLM).The distribution of TiC nanoparticles presents a three-dimensional(3D)network structure in the SLMed TiC/GTD222 composite.Mechanical testing revealed that the SLMed TiC/GTD222 composite has superior strength(UTS?1320 MPa,YS?1100 MPa)compared to the SLMed GTD222 superalloy.The GTD22 alloy reinforced with carbide nanoparticles’distinctive microstructure and its excellent mechanical properties for is discussed. 展开更多
关键词 TiC/GTD222 composite Three-dimensional network structure Selective laser melting Microstructure Mechanical properties
下载PDF
Optimal control of end-port glass tank furnace regenerator temperature based on artificial neural network 被引量:1
18
作者 陈希 《Journal of Chongqing University》 CAS 2005年第2期113-116,共4页
In the paper, an artificial neural network (ANN) method is put forward to optimize melting temperature control, which reveals the nonlinear relationships of tank melting temperature disturbances with secondary wind fl... In the paper, an artificial neural network (ANN) method is put forward to optimize melting temperature control, which reveals the nonlinear relationships of tank melting temperature disturbances with secondary wind flow and fuel pressure, implements dynamic feed-forward complementation and dynamic correctional ratio between air and fuel in the main control system. The application to Anhui Fuyang Glass Factory improved the control character of the melting temperature greatly. 展开更多
关键词 B-P network topology structure learning efficiency momentum modulus
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
19
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
An Improved FN Algorithm for Community Division of Air Route Network
20
作者 ZHAO Zheng ZHANG Saiwen +1 位作者 XU Lipeng HU Li 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期630-637,共8页
Community division is an important method to study the characteristics of complex networks.The widely used fast-Newman(FN)algorithm only considers the topology division of the network at the static layer,and dynamic t... Community division is an important method to study the characteristics of complex networks.The widely used fast-Newman(FN)algorithm only considers the topology division of the network at the static layer,and dynamic traffic flow demand is ignored.The result of the division is only structurally optimal.To improve the accuracy of community division,based on the static topology of air route network,the concept of network traffic contribution degree is put forward.The concept of operational research is introduced to optimize the network adjacency matrix to form an improved community division algorithm.The air route network in East China is selected as the object of algorithm comparison experiment,including 352 waypoints and 928 segments.The results show that the improved algorithm has a more ideal effect on the division of the community structure.The proportion of the number of nodes included in the large community has increased by 21.3%,and the modularity value has increased from 0.756 to 0.806,in which the modularity value is in the range of[-0.5,1).The research results can provide theoretical and technical support for the optimization of flight schedules and the rational use of air route resources. 展开更多
关键词 air route network community division topological structure traffic flow contribution
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部