Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoprotero...Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,展开更多
The authors present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier by Zhang (200...The authors present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier by Zhang (2002), but that study involved only small applications with 4 or 5 observed variables and no more than 2 latent variables due to the lack of efficient learning algorithms. Significant progress has been made since then on algorithmic research, and it is now possible to learn HLC models with dozens of observed variables. This allows us to demonstrate the benefits of HLC models more convincingly than before. The authors have successfully analyzed the CoIL Challenge 2000 data set using HLC models. The model obtained consists of 22 latent variables, and its structure is intuitively appealing. It is exciting to know that such a large and meaningful latent structure can be automatically inferred from data.展开更多
Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread rapidly throughout the world.SARS-CoV-2 is an enveloped,plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotid...Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread rapidly throughout the world.SARS-CoV-2 is an enveloped,plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides.The SARS-CoV-2 genome encodes 29 proteins,including 16 nonstructural,4 structural and 9 accessory proteins.To date,over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank(PDB),including 16 protein structures,two functional domain structures of nucleocapsid(N)protein,and scores of complexes.Overall,they exhibit high similarity to SARS-CoV proteins.Here,we summarize the progress of structural and functional research on SARS-CoV-2 proteins.These studies provide structural and functional insights into proteins of SARS-CoV-2,and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle,including attachment to the host cell,viral genome replication and transcription,genome packaging and assembly,and virus release.It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.展开更多
基金supported by the Nature Science Foundation of China(grant No.41472082)China Geological Survey(grant No.121201102000150012)
文摘Objective The Jilin-Liaoning area has widely spread Meso- and Neoproterozoic sediments and is always a focused area for researching Precambrian geology. Previous study has achieved a series of results about Neoproterozoic stratigraphy in this area, but the lack of precise geochronological data and signs of stratigraphic correlation has resulted in the long controversial stratigraphic age and regional correlation. During recent years,
基金Hong Kong Grants Council Grants #622105 and #622307the National Basic Research Program of China (aka the 973 Program) under project No.2003CB517106.
文摘The authors present a case study to demonstrate the possibility of discovering complex and interesting latent structures using hierarchical latent class (HLC) models. A similar effort was made earlier by Zhang (2002), but that study involved only small applications with 4 or 5 observed variables and no more than 2 latent variables due to the lack of efficient learning algorithms. Significant progress has been made since then on algorithmic research, and it is now possible to learn HLC models with dozens of observed variables. This allows us to demonstrate the benefits of HLC models more convincingly than before. The authors have successfully analyzed the CoIL Challenge 2000 data set using HLC models. The model obtained consists of 22 latent variables, and its structure is intuitively appealing. It is exciting to know that such a large and meaningful latent structure can be automatically inferred from data.
文摘Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has spread rapidly throughout the world.SARS-CoV-2 is an enveloped,plus-stranded RNA virus with a single-stranded RNA genome of approximately 30,000 nucleotides.The SARS-CoV-2 genome encodes 29 proteins,including 16 nonstructural,4 structural and 9 accessory proteins.To date,over 1,228 experimental structures of SARS-CoV-2 proteins have been deposited in the Protein Data Bank(PDB),including 16 protein structures,two functional domain structures of nucleocapsid(N)protein,and scores of complexes.Overall,they exhibit high similarity to SARS-CoV proteins.Here,we summarize the progress of structural and functional research on SARS-CoV-2 proteins.These studies provide structural and functional insights into proteins of SARS-CoV-2,and further elucidate the daedal relationship between different components at the atomic level in the viral life cycle,including attachment to the host cell,viral genome replication and transcription,genome packaging and assembly,and virus release.It is important to understand the structural and functional properties of SARS-CoV-2 proteins as it will facilitate the development of anti-CoV drugs and vaccines to prevent and control the current SARS-CoV-2 pandemic.