期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent
1
作者 蒋礼林 刘伟龙 杨延强 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期506-512,I0001,共8页
The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict ... The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states. 展开更多
关键词 C=C stretching vibration Resonance excitation Intramolecular hydrogen bonding Molecular structure
下载PDF
Resonance Raman Spectroscopic and Theoretical Study of Geometry Distortion of Thiourea in 2^1A State
2
作者 张海波 赵彦英 郑旭明 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期1-10,I0003,共11页
The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electroni... The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electronic transitions, the distorted geometry structure and the saddle point of thiourea in 21A excited state, respectively. The resonance Raman spectra were assigned. The absorption spectrum and resonance Raman intensities were modeled using Heller's time-dependent wavepacket approach to resonance Raman scattering. The results indicate that largest change in the displacement takes place with the C--S stretch mode u6 (|△|=0.95) and noticeable changes appear in the H5N3H6+H8N4H7 wag v5 (|△|=0.19), NCN symmetric stretch^-C--S stretch+N3H6+H8N4 wag v4 (|△|=0.18), while the moderate intensities of 2-15 and 4-15 are mostly due to the large excited state frequency changes of v15, but not due to its significant change in the normal mode displacement. The mechanism of the appearance of even overtones of the S-CN2 out of plane deformation is explored. The results indicate that a Franck-Condon region saddle point is the driving force for the quadric phonon mechanism within the standard A-term of resonance Raman scattering, which leads to the pyramidalization of the carbon center and the geometry distortion of thiourea molecule in 21A excited state. 展开更多
关键词 THIOUREA Excited state structural dynamics Resonance Raman Timedependent wavepacket approach Density functional theory
下载PDF
Operational Modal Analysis of a Ship Model in the Presence of Harmonic Excitation 被引量:1
3
作者 Junchen Xu Ming Hong Xiaobing Liu 《Journal of Marine Science and Application》 2013年第1期38-44,共7页
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response... A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies. 展开更多
关键词 natural excitation technique (NExT) eigensystem realization algorithm (ERA) ship structure harmonic excitation signal processing modal parameters identification ship model operational model analysis
下载PDF
Theoretical Study on Resonance Raman Spectra of Tetraoxaporphyrin Dication by TDDFT Calculation
4
作者 Guo-bing Wang Hui-qing Zhao +2 位作者 Zhen-lin Zhang Wen-lou Wang Dong-ming Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第5期-,共9页
关键词 Tetraoxaporphyrin Resonance Raman TDDFT Excited state structure Franck-Condon mechanism
下载PDF
Investigation of the Short-Time Photodissociation Dynamics of Furfural in S2 State by Resonance Raman and Quantum Chemistry Calculations
5
作者 Kemei Pei Yueben Dong Lei Chen 《Computers, Materials & Continua》 SCIE EI 2018年第4期189-200,共12页
Raman(resonance Raman,FT-Raman),IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state.The resonance Raman(RR)spectra indicate... Raman(resonance Raman,FT-Raman),IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state.The resonance Raman(RR)spectra indicate that the photorelaxation dynamics for the S0→S2 excited state is predominantly along nine motions:C=O stretchν5(1667 cm-1),ring C=C antisymmetric stretchν6(1570 cm-1),ring C=C symmetric stretchν7(1472 cm-1),C2-O6-C5 symmetric stretch/C1-H8 rock in planeν8(1389 cm-1),C3-C4 stretch/C1-H8 rock in planeν9(1370 cm-1),C5-O6 stretch in planeν12(1154 cm-1),ring breathν13(1077 cm-1),C3-C4 stretchν14(1020 cm-1),C3-C2-O6 symmetric stretchν16(928 cm-1).Stable structures of S0,S1,S2,T1 and T2 states with Cs point group were optimized at CASSCF method in Franck-Condon region there are S2/S1 conical intersection was found by state average method and RR spectra. 展开更多
关键词 FURFURAL resonance Raman quantum chemistry calculation excited state structural dynamics
下载PDF
Temperature-dependent self-trapped exciton emission in Cu(I) doped zinc-based metal halides from well-resolved excited state structures
6
作者 Yunlong Bai Shuai Zhang +2 位作者 Nengneng Luo Bingsuo Zou Ruosheng Zeng 《Nano Research》 SCIE EI CSCD 2024年第8期7768-7775,共8页
Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized C... Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs. 展开更多
关键词 sky-blue emission self-trapped exciton metal halides excited state structures temperature sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部