The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict ...The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states.展开更多
The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electroni...The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electronic transitions, the distorted geometry structure and the saddle point of thiourea in 21A excited state, respectively. The resonance Raman spectra were assigned. The absorption spectrum and resonance Raman intensities were modeled using Heller's time-dependent wavepacket approach to resonance Raman scattering. The results indicate that largest change in the displacement takes place with the C--S stretch mode u6 (|△|=0.95) and noticeable changes appear in the H5N3H6+H8N4H7 wag v5 (|△|=0.19), NCN symmetric stretch^-C--S stretch+N3H6+H8N4 wag v4 (|△|=0.18), while the moderate intensities of 2-15 and 4-15 are mostly due to the large excited state frequency changes of v15, but not due to its significant change in the normal mode displacement. The mechanism of the appearance of even overtones of the S-CN2 out of plane deformation is explored. The results indicate that a Franck-Condon region saddle point is the driving force for the quadric phonon mechanism within the standard A-term of resonance Raman scattering, which leads to the pyramidalization of the carbon center and the geometry distortion of thiourea molecule in 21A excited state.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
Raman(resonance Raman,FT-Raman),IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state.The resonance Raman(RR)spectra indicate...Raman(resonance Raman,FT-Raman),IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state.The resonance Raman(RR)spectra indicate that the photorelaxation dynamics for the S0→S2 excited state is predominantly along nine motions:C=O stretchν5(1667 cm-1),ring C=C antisymmetric stretchν6(1570 cm-1),ring C=C symmetric stretchν7(1472 cm-1),C2-O6-C5 symmetric stretch/C1-H8 rock in planeν8(1389 cm-1),C3-C4 stretch/C1-H8 rock in planeν9(1370 cm-1),C5-O6 stretch in planeν12(1154 cm-1),ring breathν13(1077 cm-1),C3-C4 stretchν14(1020 cm-1),C3-C2-O6 symmetric stretchν16(928 cm-1).Stable structures of S0,S1,S2,T1 and T2 states with Cs point group were optimized at CASSCF method in Franck-Condon region there are S2/S1 conical intersection was found by state average method and RR spectra.展开更多
Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized C...Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.展开更多
文摘The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states.
基金This work was supported by the National Natural Science Foundation of China (No.21033002 and No.20803066) and the National Basic Research Program of China (No.2007CB815203).
文摘The A-band resonance Raman spectra of thiourea were obtained in water and acetonitrile solution. B3LYP/6-311++G(3df,3pd) and RCIS/6-311++G(3df,3pd) calculations were done to elucidate the ultraviolet electronic transitions, the distorted geometry structure and the saddle point of thiourea in 21A excited state, respectively. The resonance Raman spectra were assigned. The absorption spectrum and resonance Raman intensities were modeled using Heller's time-dependent wavepacket approach to resonance Raman scattering. The results indicate that largest change in the displacement takes place with the C--S stretch mode u6 (|△|=0.95) and noticeable changes appear in the H5N3H6+H8N4H7 wag v5 (|△|=0.19), NCN symmetric stretch^-C--S stretch+N3H6+H8N4 wag v4 (|△|=0.18), while the moderate intensities of 2-15 and 4-15 are mostly due to the large excited state frequency changes of v15, but not due to its significant change in the normal mode displacement. The mechanism of the appearance of even overtones of the S-CN2 out of plane deformation is explored. The results indicate that a Franck-Condon region saddle point is the driving force for the quadric phonon mechanism within the standard A-term of resonance Raman scattering, which leads to the pyramidalization of the carbon center and the geometry distortion of thiourea molecule in 21A excited state.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金This work was supported in parts by National Natural Science Foundation of China(No.21673208)Zhejiang Provincial Natural Science Foundation of China(No.LY16B070009).
文摘Raman(resonance Raman,FT-Raman),IR and UV-visible spectroscopy and quantum chemistry calculations were used to investigate the photodissociation dynamics of furfural in S2 state.The resonance Raman(RR)spectra indicate that the photorelaxation dynamics for the S0→S2 excited state is predominantly along nine motions:C=O stretchν5(1667 cm-1),ring C=C antisymmetric stretchν6(1570 cm-1),ring C=C symmetric stretchν7(1472 cm-1),C2-O6-C5 symmetric stretch/C1-H8 rock in planeν8(1389 cm-1),C3-C4 stretch/C1-H8 rock in planeν9(1370 cm-1),C5-O6 stretch in planeν12(1154 cm-1),ring breathν13(1077 cm-1),C3-C4 stretchν14(1020 cm-1),C3-C2-O6 symmetric stretchν16(928 cm-1).Stable structures of S0,S1,S2,T1 and T2 states with Cs point group were optimized at CASSCF method in Franck-Condon region there are S2/S1 conical intersection was found by state average method and RR spectra.
基金supported by the National Natural Science Foundation of China(Nos.22175043 and 52162021)Guangxi Science and Technology Plan Project(No.Guike AA23073018)supported by the high-performance computing platform of Guangxi University。
文摘Zero-dimensional metal halides are of unique structures and tunable photoluminescence properties,showing great potential applications such as light-emitting diodes(LEDs)and sensing.Herein,we successfully synthesized Cu^(+)doped(MA)_(2)ZnCl_(4)metal halides by a slow evaporation solvent method.The introduction of Cu^(+)results in sky-blue self-trapped exciton emission in(MA)_(2)ZnCl_(4) at 486 nm at room temperature,and a photoluminescence quantum yield is as high as 54.9%.Interestingly,at low temperatures,Cu^(+)-doped(MA)_(2)ZnCl_(4) exhibits two emission peaks located at 482 and 605 nm,respectively.This temperaturedependent dual emission indicates two excited state structures that exist on the triplet excited-state potential energy surface.In addition,the temperature sensor we fitted has good performance(Sr=1.65%·K^(−1)),which is the first attempt in Cu^(+) doped Znbased metal halides.Our work enriches the family of sky-blue metal halides and provides a promising strategy for building skyblue LEDs.