A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the fin...The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.展开更多
Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ...Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.展开更多
In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturb...In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.展开更多
For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can b...For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.展开更多
A specific computational program SAFEM was developed based on semi-analytical finite element (FE) method for analysis of asphalt pavement structural responses under static loads. The reliability and efficiency of th...A specific computational program SAFEM was developed based on semi-analytical finite element (FE) method for analysis of asphalt pavement structural responses under static loads. The reliability and efficiency of this FE program was proved by comparison with the general commercial FE software ABAQUS. In order to further reduce the computational time without decrease of the accuracy, the infinite element was added to this program. The results of the finite-infinite element coupling analysis were compared with those of finite element analysis derived from the verified FE program, The study shows that finite-infinite element coupling analysis has higher reliability and efficiency.展开更多
A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from...A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.展开更多
A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to ...A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to provide 3D damping to absorb shocks from all directions. Two designs are presented: one has 12 T-shape slots in the radian direction while the other has 8 spiral slots in the radian direction. Both designs have flexure mountings on the axial directions. Based on the finite element analysis (FEA), the new bearing can reduce the vibration (displacement) by as much as 8.37% and hence, can better protect the shafts.展开更多
In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an importan...In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.展开更多
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘In this paper, a kind of rationalism theory of shell is established which is of different mechanic characters in tension and in compression, and the finite element numerical analysis method is also described.
文摘The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.
文摘Nonlinear solution of reinforced concrete structures, particularly complete load-deflection response, requires tracing of the equilibrium path and proper treatment of the limit and bifurcation points. In this regard, ordinary solution techniques lead to instability near the limit points and also have problems in case of snap-through and snap-back. Thus they fail to predict the complete load-displacement response. The arc-length method serves the purpose well in principle, received wide acceptance in finite element analysis, and has been used extensively. However modifications to the basic idea are vital to meet the particular needs of the analysis. This paper reviews some of the recent developments of the method in the last two decades, with particular emphasis on nonlinear finite element analysis of reinforced concrete structures.
文摘In the present paper, we hare mtroduced the random materials. loads. geometricalshapes, force and displacement boundary condition directly. into the functionalvariational formula, by. use of a small parameter perturbation method, a unifiedrandom variational principle in finite defomation of elastieity and nonlinear randomfinite element method are esiablished, and used.for reliability, analysis of structures.Numerical examples showed that the methods have the advontages of simple andconvenient program implementation and are effective for the probabilistic problems inmechanics.
基金Projects(51405516,U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Science and Technology Program for Hunan Provincial Science and Technology Department,ChinaProject(2013zzts040)supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘For the safety protection of passengers when train crashes occur, special structures are crucially needed as a kind of indispensable energy absorbing device. With the help of the structures, crash kinetic-energy can be completely absorbed or dissipated for the aim of safety. Two composite structures(circumscribed circle structure and inscribed circle structure) were constructed. In addition, comparison and optimization of the crashworthy characteristic of the two structures were carried out based on the method of explicit finite element analysis(FEA) and Kriging surrogate model. According to the result of Kriging surrogate model, conclusions can be safely drawn that the specific energy absorption(SEA) and ratio of specific energy absorption to initial peak force(REAF) of circumscribed circle structure are lager than those of inscribed circle structure under the same design parameters. In other words, circumscribed circle structure has better performances with higher energy-absorbing ability and lower initial peak force. Besides, error analysis was adopted and the result of which indicates that the Kriging surrogate model has high nonlinear fitting precision. What is more, the SEA and REAF optimum values of the two structures have been obtained through analysis, and the crushing results have been illustrated when the two structures reach optimum SEA and REAF.
基金represented by German Federal Highway Research Institute (BASt)financed by the Federal Minister of Transport and Digital Infrastructure (BMVI)conducted under FE 04.0259/2012/NGB
文摘A specific computational program SAFEM was developed based on semi-analytical finite element (FE) method for analysis of asphalt pavement structural responses under static loads. The reliability and efficiency of this FE program was proved by comparison with the general commercial FE software ABAQUS. In order to further reduce the computational time without decrease of the accuracy, the infinite element was added to this program. The results of the finite-infinite element coupling analysis were compared with those of finite element analysis derived from the verified FE program, The study shows that finite-infinite element coupling analysis has higher reliability and efficiency.
基金This project is supported by National Natural Science Foundation ofChina(No.l9832020) and National Outstanding Youth Science Foundation ofChina(No.10125208).
文摘A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.
基金Selected from Proceedings of the 7th International Conference on Frontiers of DesignManufacturing(ICFDM'2006)This project is partially sup-ported by the Research Grant from the Hong Kong Watch Manufacturers Association the Federation of Hong Kong Watch TradeIndustry Technology Commission China(No.ITS/001/05).
文摘A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to provide 3D damping to absorb shocks from all directions. Two designs are presented: one has 12 T-shape slots in the radian direction while the other has 8 spiral slots in the radian direction. Both designs have flexure mountings on the axial directions. Based on the finite element analysis (FEA), the new bearing can reduce the vibration (displacement) by as much as 8.37% and hence, can better protect the shafts.
基金Supported by the Major State Basic Research Development Program of China(973Project)(2011CB706900)
文摘In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.