The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif...The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.展开更多
Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective...Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.展开更多
Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanica...Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and...The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.展开更多
Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the ...Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.展开更多
In this paper the differences and characteristics of the degree of seismic activities of various tectonic blocks and the different parts within the blocks in the eastern part of the Chinese mainland (to the east of 10...In this paper the differences and characteristics of the degree of seismic activities of various tectonic blocks and the different parts within the blocks in the eastern part of the Chinese mainland (to the east of 105°E) have been studied. Based on the results, the crust-mantle structural factors which caused these differences have further been studied from the inner and deep part of the plate. The ratio between the crustal and lithospheric thicknesses, i. e. the so-called crust-mantle structural ratio R, has been calculated. The result has shown that the magnitude of R has a close relation to the degree of seismic activity. The R-value implies the state of the movement of crust-mantle materials and the degree of interaction between the crust and mantle through convection and intrusion.展开更多
In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal i...In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.展开更多
The speeds of output shaft of a machine tool ni=n1E are expressed by the exponentvalues Ej of series ratio . Based on this expression, the inherert law of differences between expo-nents of driven points from the same ...The speeds of output shaft of a machine tool ni=n1E are expressed by the exponentvalues Ej of series ratio . Based on this expression, the inherert law of differences between expo-nents of driven points from the same drive pair and the same driving point and of correspordingdriving points A method for finding out the exponents of the range ratio hat been given accordingto the law and it is called coordinate diagram method. Finally, a mathematical model is constiuctedand a computer programme is designed.展开更多
[Objective] To analyze the efficiency of Hunan agro-ecosystem in 1980- 2010. [Method] This paper adopts the emergy methods to evaluate the emergy input and output. [Result] The growth of total emergy input was mainly ...[Objective] To analyze the efficiency of Hunan agro-ecosystem in 1980- 2010. [Method] This paper adopts the emergy methods to evaluate the emergy input and output. [Result] The growth of total emergy input was mainly caused by the auxiliary factors in this phase. The proportion of the nonrenewable purchased emergy input to the total auxiliary emergy input increased from 21.80% in 1980 to 33.04% in 2010. In 1980-2010 the total emergy output of the system increased by 2.43 times, the proportions of the stock farming emergy output and fishery emergy output to the total emergy output increased sharply, while those of the planting emergy output and forestry emergy output showed a considerable decline. [Conclusion] The emergy yield ratio of this system was improved but its sustainability was worrying.展开更多
The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics...The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.展开更多
Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structu...Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.展开更多
Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high comp...Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.展开更多
Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.A...Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.展开更多
For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral in...For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral inelastic displacement demands from maximum elastic displacement demands.The CDDRS are computed for single-degree-of-freedom systems(SDOF) by considering or ignoring P-Δ effect for different ductility levels when subjected to 344 earthquake ground motions recorded in four site classes.The modified expressions of CDDRS for P-Δ effect are proposed.It is concluded that the P-Δ effect on CDDRS is significant,and the effect increases with the increase of ductility level.In the long-period region,the CDDRS ignoring P-Δ effect almost conforms to the equal-displacement rule.But in the case of higher ductility level,the CDDRS considering P-Δ effect are much higher than 1.0,which do not conform to the equal-displacement rule.展开更多
Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, wh...Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.展开更多
Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however th...Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however the mechanism of that influence is not clear. In order to examine the reproductive strategies of PWN in response to the stress of the volatile material a-pinene, we investigated different aspects of population changes of B.xylophilus under two concentrations of a-pinene. The results show that a high concentration(214.5 mg ml-1)promoted population growth while a low concentration(56.33 mg ml-1) decreased the population. Population structure was analyzed and it was found that a high concentration of a-pinene decreased the percentage of adults but increased the percentages of larvae and eggs.Furthermore, from the results of an evaluation of sex ratios(female/male), it was determined that a high concentration could elevate sex ratios but a low concentration decreased ratios sharply. These results suggest that the PWN could regulate its population by changing sex ratios under stress of a-pinene. This study has provided a theoretical basis for the prevention and control of pine wilt disease caused by the pine wood nematode.展开更多
The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferroox...The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.展开更多
The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for i...The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.展开更多
Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in ...Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity (V S=3.90km/s) lower than that at the same depth in its eastern and southern areas (V S≥4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and low velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer (V S=3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the V P/V S ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60) in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively, and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.展开更多
文摘The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.
基金funded by the National Natural Science Foundation of China(Grant No.51505096)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E064).
文摘Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization.
基金Supported by National Natural Science Foundation of China(Grant Nos.52171121,51971151,52201131 and 52201132)Liaoning Provincial Xingliao Program of China(Grant No.XLYC1907083)+1 种基金Liaoning Provincial Natural Science Foundation of China(Grant No.2022-NLTS-18-01)Open Foundation of Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education of China(Grant No.HEU10202205).
文摘Magnesium(Mg)alloys are the lightest metal structural material for engineering applications and therefore have a wide market of applications.However,compared to steel and aluminum alloys,Mg alloys have lower mechanical properties,which greatly limits their application.Extrusion is one of the most important processing methods for Mg and its alloys.However,the effect of such a heterogeneous microstructure achieved at low temperatures on the mechanical properties is lacking investigation.In this work,commercial AZ80 alloys with different initial microstructures(as-cast and as-homogenized)were selected and extruded at a low extrusion temperature of 220℃and a low extrusion ratio of 4.The microstructure and mechanical properties of the two extruded AZ80 alloys were investigated.The results show that homogenized-extruded(HE)sample exhibits higher strength than the cast-extruded(CE)sample,which is mainly attributed to the high number density of fine dynamic precipitates and the high fraction of recrystallized ultrafine grains.Compared to the coarse compounds existing in CE sample,the fine dynamical precipitates of Mg17(Al,Zn)12form in the HE sample can effectively promote the dynamical recrystallization during extrusion,while they exhibit a similar effect on the size and orientation of the recrystallized grains.These results can facilitate the designing of high-strength wrought magnesium alloys by rational microstructure construction.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
基金financially supported by National Natural Science Foundation of China,China (Grant No.52022012)National Key R&D Program for Young Scientists of China,China (Grant No.2022YFC3080900)。
文摘The high variability of shock in terrorist attacks poses a threat to people's lives and properties,necessitating the development of more effective protective structures.This study focuses on the angle gradient and proposes four different configurations of concave hexagonal honeycomb structures.The structures'macroscopic deformation behavior,stress-strain relationship,and energy dissipation characteristics are evaluated through quasi-static compression and Hopkinson pressure bar impact experiments.The study reveals that,under varying strain rates,the structures deform starting from the weak layer and exhibit significant interlayer separation.Additionally,interlayer shear slip becomes more pronounced with increasing strain rate.In terms of quasi-static compression,symmetric gradient structures demonstrate superior energy absorption,particularly the symmetric negative gradient structure(SNG-SMS)with a specific energy absorption of 13.77 J/cm~3.For dynamic impact,unidirectional gradient structures exhibit exceptional energy absorption,particularly the unidirectional positive gradient honeycomb structure(UPG-SML)with outstanding mechanical properties.The angle gradient design plays a crucial role in determining the structure's stability and deformation mode during impact.Fewer interlayer separations result in a more pronounced negative Poisson's ratio effect and enhance the structure's energy absorption capacity.These findings provide a foundation for the rational design and selection of seismic protection structures in different strain rate impact environments.
文摘Optimization of structural parameters aimed at improving the load carrying capacity of spatial flexible redundant manipulators is presented in this paper. In order to increase the ratio of load to mass of robots, the cross-sectional parameters and constructional parameters are optimized respectively. The cross-sectional and configurational parameters are optimized simultaneously. The numerical simulation of a 4R spatial manipulator is performed. The results show that the load capacity of robots has been greatly improved through the optimization strategies proposed in this paper.
文摘In this paper the differences and characteristics of the degree of seismic activities of various tectonic blocks and the different parts within the blocks in the eastern part of the Chinese mainland (to the east of 105°E) have been studied. Based on the results, the crust-mantle structural factors which caused these differences have further been studied from the inner and deep part of the plate. The ratio between the crustal and lithospheric thicknesses, i. e. the so-called crust-mantle structural ratio R, has been calculated. The result has shown that the magnitude of R has a close relation to the degree of seismic activity. The R-value implies the state of the movement of crust-mantle materials and the degree of interaction between the crust and mantle through convection and intrusion.
文摘In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.
文摘The speeds of output shaft of a machine tool ni=n1E are expressed by the exponentvalues Ej of series ratio . Based on this expression, the inherert law of differences between expo-nents of driven points from the same drive pair and the same driving point and of correspordingdriving points A method for finding out the exponents of the range ratio hat been given accordingto the law and it is called coordinate diagram method. Finally, a mathematical model is constiuctedand a computer programme is designed.
基金Supported by Hunan Provincial Situation and Decision Consultation Project (2012BZZ16)National Social Science Fund of China(11BJY029)Youth Fund Project of Central South University of Forestry and Technology(2011ZB003)~~
文摘[Objective] To analyze the efficiency of Hunan agro-ecosystem in 1980- 2010. [Method] This paper adopts the emergy methods to evaluate the emergy input and output. [Result] The growth of total emergy input was mainly caused by the auxiliary factors in this phase. The proportion of the nonrenewable purchased emergy input to the total auxiliary emergy input increased from 21.80% in 1980 to 33.04% in 2010. In 1980-2010 the total emergy output of the system increased by 2.43 times, the proportions of the stock farming emergy output and fishery emergy output to the total emergy output increased sharply, while those of the planting emergy output and forestry emergy output showed a considerable decline. [Conclusion] The emergy yield ratio of this system was improved but its sustainability was worrying.
基金Funded by the National Basic Research Program of China (973 Program) (No. 2009CB623201)the National Natural Science Foundation of China (No.51072150)
文摘The samples of the C-S-H series were synthesized by hydrothermal reaction of fumed silica, CaO and deionized water at initial C/S ratios between 1.0-1.7. Phase composition and structural and morphology characteristics of C-S-H samples were analyzed by XRD, IR and SEM. The experimental results showed that the d-spacing of (002), (110) and (020) decreased, the d-spacing of (200) increased, and the d-spacing of (310) varied randomly, the polymerization of silica tetrahedra of C-S-H decreased, and morphology of C-S-H samples varied from sheet shapes to long reticular fibers as C/S ratio increased.
基金National Natural Science Foundation of China under Grant No.51338001Natural Science Foundation of China under Grant Nos.51178028 and 51422801+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.2014YJS087Program for New Century Excellent Talents in University under Grant No.NCET-11-0571111 Project of China under Grant No.B13002
文摘Tibetan heritage buildings have a high historical and cultural value. They have endured adverse environmental loadings over hundreds of years without significant damage. However, there are few reports on their structural characteristics under normal environmental loadings and their behavior under dynamic loadings. In this research, a typical Tibetan wooden wall-frame building is selected to study its dynamic characteristics. Field measurements of the structure were conducted under environmental excitation to collect acceleration responses. The stochastic subspace identification (SSI) method was adopted to calculate the structural modal parameters and obtain the out-of-plane vibration characteristics of the slab and frames. The results indicated that the wall-frame structure had a lower out-of-plane stiffness and greater in-plane stiffness due to the presence of stone walls. Due to poor identified damping ratio estimates from the SSI method, a method based on the variance upper bound was proposed to complement the existing variance lower bound method for estimating the modal damping ratio to address the significant damping variability obtained from different points and measurements. The feasibility of the proposed method was illustrated with the measured data from the floor slab of the structure. The variance lower and upper bound methods both provided consistent results compared to those from the traditional SSI method.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Inverse synthetic aperture radar (ISAR) image can be represented and reconstructed by sparse recovery (SR) approaches. However, the existing SR algorithms, which are used for ISAR imaging, have suffered from high computational cost and poor imaging quality under a low signal to noise ratio (SNR) condition. This paper proposes a fast decoupled ISAR imaging method by exploiting the inherent structural sparse information of the targets. Firstly, the ISAR imaging problem is decoupled into two sub-problems. One is range direction imaging and the other is azimuth direction focusing. Secondly, an efficient two-stage SR method is proposed to obtain higher resolution range profiles by using jointly sparse information. Finally, the residual linear Bregman iteration via fast Fourier transforms (RLBI-FFT) is proposed to perform the azimuth focusing on low SNR efficiently. Theoretical analysis and simulation results show that the proposed method has better performence to efficiently implement higher-resolution ISAR imaging under the low SNR condition.
基金National Natural Science Foundation of China(Grant Nos.51705158 and 51805174)the Fundamental Research Funds for the Central Universities(Grant Nos.2018MS45 and 2019MS059)。
文摘Focusing on the structural optimization of auxetic materials using data-driven methods,a back-propagation neural network(BPNN)based design framework is developed for petal-shaped auxetics using isogeometric analysis.Adopting a NURBSbased parametric modelling scheme with a small number of design variables,the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method,and demonstrated in this work to give high accuracy and efficiency.Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis,in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
基金Supported by the National Natural Science Foundation of China(Grant No.90815014,50608024)Opening Laboratory of Earthquake Engineering and Engineering Vibration Foundation(Grant No.2007001)Opening Laboratory of Seismic Control and Structural Safety Foundation(Grant No.0808)
文摘For the evaluation of structures with known ductility demands,the constant-ductility displacement ratio spectra(CDDRS) are particularly useful for providing inelastic displacement ratios to estimate maximum lateral inelastic displacement demands from maximum elastic displacement demands.The CDDRS are computed for single-degree-of-freedom systems(SDOF) by considering or ignoring P-Δ effect for different ductility levels when subjected to 344 earthquake ground motions recorded in four site classes.The modified expressions of CDDRS for P-Δ effect are proposed.It is concluded that the P-Δ effect on CDDRS is significant,and the effect increases with the increase of ductility level.In the long-period region,the CDDRS ignoring P-Δ effect almost conforms to the equal-displacement rule.But in the case of higher ductility level,the CDDRS considering P-Δ effect are much higher than 1.0,which do not conform to the equal-displacement rule.
文摘Rubber isolation is the most mature control technology in practical application, and is widely used by short rigid buildings. However, many high isolation buildings have been built around the world in recent years, which do not follow the existing criterions and codes. Many researchers began to research the special problems caused by larger height-width ratio isolation structures. The overturning effect of high height-width ratio structures with rubber bearing is firstly studied. Considering the main factors, such as the height-width ratio of structures, type of site, the designed basic acceleration of ground motion and the decouple factor in horizon, computing experiment is defined with the Uniform Design Method, which is also known as designing isolation structure. The forces of the bearing under edge of structures based on the position of the rubber bearing are calculated. The result indicates that the rubber bearings will lose its functionality under very high tension and compressing force of earthquake motion in horizon and vertical, when the height-width ratio is over a certain value. Thus, based on the calculation result of isolation structures defined in the uniform design method, regression analysis is conducted, and also the rubber edge force regression formula are gotten, which has higher correlation and smaller standard deviation. This formula can be used to roughly calculate whether the pull force occurs at the edge of the building. By the edge bearings of isolation structure minimum force formula, the height-width ratio limited value of the isolation structure is deducted when rubber bearing has minimum force of zero.
基金financially supported by Fundamental Research Funds of Research Institute of Forest New Technology,CAF(CAFYBB2018SY037)National Key Research and Development Program(2016YFC1200604)。
文摘Pine wood nematode(PWN), Bursaphelenchus xylophilus, is a serious pathogen of pines throughout the world. Previous work indicated that different concentrations of a-pinene could affect nematode reproduction,however the mechanism of that influence is not clear. In order to examine the reproductive strategies of PWN in response to the stress of the volatile material a-pinene, we investigated different aspects of population changes of B.xylophilus under two concentrations of a-pinene. The results show that a high concentration(214.5 mg ml-1)promoted population growth while a low concentration(56.33 mg ml-1) decreased the population. Population structure was analyzed and it was found that a high concentration of a-pinene decreased the percentage of adults but increased the percentages of larvae and eggs.Furthermore, from the results of an evaluation of sex ratios(female/male), it was determined that a high concentration could elevate sex ratios but a low concentration decreased ratios sharply. These results suggest that the PWN could regulate its population by changing sex ratios under stress of a-pinene. This study has provided a theoretical basis for the prevention and control of pine wilt disease caused by the pine wood nematode.
基金Project(2017zzts382)supported by Central South University Postgraduate Independent Exploration and Innovation,ChinaProject(2014jpkc003)supported by Central South University Graduate Excellent Course,China+1 种基金Project(2015JJ2165)supported by Hunan Provincial Natural Science Foundation of ChinaProject(165611031)supported by Central South University Fundamental Research Funds Special Funding,China。
文摘The energy metabolism structure of microbial community plays an important role in the process of biohydrometallurgy.In this article,an artificial microbial community composed of three strains(Acidithiobacillus ferrooxidans,Leptospirillum ferriphilum and Acidithiobacillus thiooxidans)was used to leach three kinds of chalcopyrites with different iron-sulfur ratios.After 36 d of leaching,the chalcopyrite with iron-sulfur ratio of about 1:1 achieved the highest copper extraction(69.62%).In the early stage,iron oxidizing bacteria predominated,and the expression of rus and rio was 8 times higher than that in the late stage.In the late stage,sulfur oxidizing bacteria predominated,and the expression of tetH and HdrAB was 4 times higher than that in the early stage.Furthermore,the three bioleaching systems above were added with elemental sulfur(3 g/L);the chalcopyrite with iron-sulfur ratio of about 2:1 achieved the highest copper extraction(80.63%).The results suggest that the energy metabolism structure of the microbial community could be changed by changing the iron-sulfur ratio during the leaching process for improving the leaching efficiency of chalcopyrite.
基金supported the National Key Research and Development Program of China (Nos.2016YFE0202400, 2018YFC1505306)the National Natural Science Foundation of China (No.41971076)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘The shear properties of ice-frozen soil interface are important when studying the constitutive model of frozen soil and slope stability in cold regions. In this research, a series of cryogenic direct shear tests for ice-frozen clay soil interface were conducted. Based on experimental results, a nonlinear interface structural damage model is proposed to describe the shear properties of ice-frozen clay soil interface. Firstly, the cementation and friction structural properties of frozen soil materials were analyzed, and a structural parameter of the ice-frozen clay soil interface is proposed based on the cryogenic direct shear test results. Secondly, a structural coefficient ratio is proposed to describe the structural development degree of ice-frozen clay soil interface under load, which is able to normalize the shear stress of ice-frozen clay soil interface,and the normalized data can be described by the Duncan-Chang model. Finally, the tangent stiffness of ice-frozen clay soil interface is calculated, which can be applied to the mechanics analysis of frozen soil. Also, the shear stress of ice-frozen clay soil interface calculated by the proposed model is compared with test results.
文摘Using pure S wave fitting method, we studied the shear wave velocity structures under the Ordos block and its eastern and southern marginal areas. The results show that the velocity structure beneath Yulin station in the interior of Ordos block is relatively stable, where no apparent change between high and low velocity layers exists and the shear wave velocity increases steadily with the depth. There is a 12km thick layer at the depth of 25km under this station, with an S wave velocity (V S=3.90km/s) lower than that at the same depth in its eastern and southern areas (V S≥4.00km/s). The crust under the eastern margin of Ordos block is thicker than that of the Yulin station, and the velocity structures alternate between the high and low velocity layers, with more low velocity layers. It has the same characteristic as having a 10km-thick low velocity layer (V S=3.80km/s) in the lower crust but buried at a depth of about 35km. Moreover, we studied the V P/V S ratio under each station in combination with the result of P wave velocity inversion. The results show that, the average velocity ratio of the Yulin station at the interior of Ordos block is only 1.68, with a very low ratio (about 1.60) in the upper crust and a stable ratio of about 1.73 in the mid and lower crust, which indicates the media under this station is homogenous and stable, being in a state of rigidity. But at the stations in the eastern and southern margins of the Ordos block, several layers of high velocity ratio (about 1.80) have been found, in which the average velocity ratio under Kelan and Lishi stations at the eastern margin is systemically higher than that of the general elastical body waves (1.732). This reflects that the crust under the marginal areas is more active relatively, and other materials may exist in these layers. Finally, we discussed the relationship among earthquakes, velocity structures beneath stations and faults.