Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrosp...Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.展开更多
Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially ...Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.展开更多
Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on...Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on the structures of the products were investigated. The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra. For comparing with the bilayer perovskite hybrids in structure and band gap magnitude, the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized. The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.展开更多
Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic c...Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems.展开更多
Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum e...Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.展开更多
A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabr...A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.展开更多
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel meth...Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.展开更多
MXenes,transition metal carbides and nitrides with graphene-like structures,have received considerable attention since their first discovery.On the other hand,Graphene has been extensively used in biomedical and medic...MXenes,transition metal carbides and nitrides with graphene-like structures,have received considerable attention since their first discovery.On the other hand,Graphene has been extensively used in biomedical and medicinal applications.MXene and graphene,both as promising candidates of two-dimensional materials,have shown to possess high potential in future biomedical applications due to their unique physicochemical properties such as superior electrical conductivity,high biocompatibility,large surface area,optical and magnetic features,and extraordinary thermal and mechanical properties.These special structural,functional,and biological characteristics suggest that the hybrid/composite structure of MXene and graphene would be able to meet many unmet needs in different fields;particularly in medicine and biomedical engineering,where high-performance mechanical,electrical,thermal,magnetic,and optical requirements are necessary.However,the hybridization and surface functionalization should be further explored to obtain biocompatible composites/platforms with unique physicochemical properties,high stability,and multifunctionality.In addition,toxicological and long-term biosafety assessments and clinical translation evaluations should be given high priority in research.Although very limited studies have revealed the excellent potentials of MXene/graphene in biomedicine,the next steps should be toward the extensive research and detailed analysis in optimizing the properties and improving their functionality with a clinical and industrial outlook.Herein,different synthesis/fabrication methods and performances of MXene/graphene composites are discussed for potential biomedical applications.The potential toxicological effects of these composites on human cells and tissues are also covered,and future perspectives toward more successful translational applications are presented.The current state-of-the-art biotechnological advances in the use of MXene-Graphene composites,as well as their developmental challenges and future prospects are also deliberated.Due to the superior properties and multifunctionality of MXene-graphene composites,these hybrid structures can open up considerable new horizons in future of healthcare and medicine.展开更多
A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .i...A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems.展开更多
In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of...In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy(HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO_3 nanowires. The effect of the Au nanoparticles on the NO_2-sensing performance of WO_3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO_2 at room temperature(25℃). It is found that the 10-? Au-loaded WO_3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO_3 nanowires/porous silicon is also discussed.展开更多
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w...Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.展开更多
Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between ...Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.展开更多
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
To develop highly active and low-cost electrocatalyst is very important to improve the efficiency of water splitting.However,the current catalysts still present serious challenges due to the poor intrinsic activity an...To develop highly active and low-cost electrocatalyst is very important to improve the efficiency of water splitting.However,the current catalysts still present serious challenges due to the poor intrinsic activity and high overpotential.Herein,we report several amino induced Co-based composite catalysts.As a structure-mediating agent,ethylenediamine (EDA) can not only regulate the crystal structure and but also provide many surface amino groups.The obtained ZnCo_(2)S_(4)/CoZn_(13) catalysts show an excellent oxygen evolution reaction (OER) performance (274 mV@50 mA cm^(-2)) and the overpotential of 160 mV at-10 mA cm^(-2) for hydrogen evolution reaction (HER).For electrolysis of water,the electrocatalysts deliver a cell voltage of 1.61 V at 50 m A cm^(-2).This study provides a facile synthetic strategy to construct advanced electrocatalysts for future applications.展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
We report an extraordinary sound absorption enhancement in low and intermediate frequencies achieved by a thin multi-slit hybrid structure formed by incorporating micrometer scale micro-slits into a sub-millimeter sca...We report an extraordinary sound absorption enhancement in low and intermediate frequencies achieved by a thin multi-slit hybrid structure formed by incorporating micrometer scale micro-slits into a sub-millimeter scale meso-slit matrix. Theoretical and numerical results reveal that this exotic phenomenon is attributed to the noticeable velocity and temperature gradients induced at the junctures of the micro- and meso-slits, which cause significant loss of sound energy as a result of viscous and thermal effects. It is demonstrated that the proposed thin multi-slit hybrid structure with micro-scale configuration is capable of controling low frequency noise with large wavelength, which is attractive for applications where the size and weight of a sound absorber are restricted.展开更多
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
Owing to unprecedented climate change issues in recent times, global automotive industry is striving hard in developing novel functional materials to improve vehicle’s fuel efficiency. It is believed that more than a...Owing to unprecedented climate change issues in recent times, global automotive industry is striving hard in developing novel functional materials to improve vehicle’s fuel efficiency. It is believed that more than a quarter of all combined greenhouse gas emissions (GHG) are associated with road transport vehicles. All these facts in association with heightened consumer awareness and energy security issues have led to automotive lightweighting as a major research theme across the globe. Almost all North American and European original equipment manufacturers (OEMs) related to automotive industry have chalked out ambitious weight reduction plans in response to stricter environmental regulations. This review entails main motives and current legislation which has prompted major OEMs to have drastic measures in bringing down vehicle weight to suggested limits. Also discussed are recent advances in developing advanced composites, and cellulose-enabled light weight automotive composites with special focus on research efforts of Center for Biocomposites and Biomaterials Processing (CBBP), University of Toronto, Canada.展开更多
We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a pa...We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.展开更多
Tissue culture seedlings of the hybrid Cymbidium were inoculated with six different fungal strains, isolated from the roots of different wild terrestrial orchids. About three months later, the average increment of fre...Tissue culture seedlings of the hybrid Cymbidium were inoculated with six different fungal strains, isolated from the roots of different wild terrestrial orchids. About three months later, the average increment of fresh weight of seedlings inoculated with strains CF1, CF3 and CF12 were respectively 130.26%, 345.65% and 153.34% while that of the control was only 88.40%. The differences between the three treatments and the control were statistically significant (α = 0.05), highlighting the treatment with strain CF3 (α = 0.01). In addition, the three strains were obtained by re-isolating. Pelotons, regarded as typical structures of orchid mycorrhiza, were also found in the inoculating roots under a microscope. It seems that the strains of CF1, CF3, and CF12 are associated with the hybrid Cymbidium and supplied the orchid with nutrition. It can be confirmed that the three strains are beneficial for the seedlings of this hybrid.展开更多
基金supported by the Opening Project of the Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource(Grant No.2021ABPCR010)the Natural Science Research Project of Jiangsu Higher Education Institutions of China(Grants No.20KJB150035,21KJD610004,and 21KJA530004).
文摘Removal of uranium(VI)from nuclear wastewater is urgent due to the global nuclear energy exploitation.This study synthesized novel sponge-like 3D porous materials for enhanced uranium adsorption by combining electrospinning and fibrous freeze-shaping techniques.The materials possessed an organic-inorganic hybrid architecture based on the electrospun fibers of polyacrylonitrile(PAN)and SiO_(2).As a sup-porting material,the surface of fibrous SiO_(2) could be further functionalized by cyano groups via(3-cyanopropyl)triethoxysilane.All the cyano groups were turned into amidoxime(AO)groups to obtain a amidoxime-functionalized sponge(PAO/SiO_(2)-AO)through the subsequent ami-doximation process.The proposed sponge exhibited enhanced uranium adsorption performance with a high removal capacity of 367.12 mg/g,a large adsorption coefficient of 4.0×10^(4)mL/g,and a high removal efficiency of 97.59%.The UO_(2)^(2+)adsorption kinetics perfectly conformed to the pseudo-second-order reaction.The sorbent also exhibited an excellent selectivity for UO_(2)^(2+) with other interfering metal ions.2023 Hohai University.Production and hosting by Elsevier B.V.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175029,51475035)
文摘Conventional overconstrained parallel manipulators have been widely studied both in industry and academia,however the structural synthesis of hybrid mechanisms with additional constraints is seldom studied,especially for the four degrees of freedom(DOF) hybrid mechanisms.In order to develop a manipulator with additional constraints,a class of important spatial mechanisms with coupling chains(CCs) whose motion type is two rotations and two translations(2R2T) is presented.Based on screw theory,the combination of different types of limbs which are used to construct parallel mechanisms and coupling chains is proposed.The basic types of the general parallel mechanisms and geometric conditions of the kinematic chains are given using constraint synthesis method.Moreover,the 2R2T motion pattern hybrid mechanisms which are derived by adding coupling chains between different serial kinematic chains(SKCs) of the corresponding parallel mechanisms are presented.According to the constraint analysis of the mechanisms,the movement relationship of the moving platform and the kinematic chains is derived by disassembling the coupling chains.At last,fourteen novel hybrid mechanisms with two or three serial kinematic chains are presented.The proposed novel hybrid mechanisms and construction method enrich the family of the spatial mechanisms and provide an instruction to design more complex hybrid mechanisms.
基金National Natural Science Foundation of China(No.50972113)
文摘Layered organic-inorganic hybrids containing bilayer perovsikte (R-NH3)2(CH3NH3)Pb2I7 (where R=C12H25,C6H5C2H4) were synthesized by reactions in solution. The influences of the solvents and the reactant ratio on the structures of the products were investigated. The structures and the properties of the hybrids were characterized using X-ray diffraction (XRD) and ultraviolet and visible (UV) adsorption spectra. For comparing with the bilayer perovskite hybrids in structure and band gap magnitude, the hybrids containing monolayer perovskite (R-NH3)2PbI4 were also synthesized and characterized. The results demonstrate that the thickness of inorganic layer has obvious effect on the tunneling magnitude of the band gap but the organic part can be micro actuator of band gap.
基金financially supported by the National Natural Science Foundation of China (No.52072119)Natural Science Foundation of Hunan Province (No.2023JJ50015)+2 种基金the 111 Project (No.D20015)the Australian Research Council (No.DP230100198)the Echidna at the Australian centre for Neutron Scattering under Merit Programs (beamtime: M13623)。
文摘Realizing high-rate capability and high-efficiency utilization of polyanionic cathode materials is of great importance for practical sodium-ion batteries(SIBs) since they usually suffer from extremely low electronic conductivity and limited ionic diffusion kinetics. Herein, taking Na_(3.5)V_(1.5)Mn_(0.5)(PO_(4))_(3)(NVMP) as an example, a reinforced concrete-like hierarchical and porous hybrid(NVMP@C@3DPG) built from 3D graphene(“rebar”) frameworks and in situ generated carbon coated NVMP(“concrete”) has been developed by a facile polymer assisted self-assembly and subsequent solid-state method. Such hybrids deliver superior rate capability(73.9 m Ah/g up to 20 C) and excellent cycling stability in a wide temperature range with a high specific capacity of 88.4 m Ah/g after 5000 cycles at 15 C at room temperature, and a high capacity retention of 97.1% after 500 cycles at 1 C(-20 ℃), and maintaining a high reversible capacity of 110.3 m Ah/g in full cell. This work offers a facile and efficient strategy to develop advanced polyanionic cathodes with high-efficiency utilization and 3D electron/ion transport systems.
基金supported by the National Natural Science Foundation of China(42004086,42172159)the Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023007).
文摘Pore structure is a crucial factor affecting the physical properties of porous materials,and understanding the mechanisms and laws of these effects is of great significance in the fields of geosciences and petroleum engineering.However,it remains a challenge to accurately understand and quantify the relationship between pore structures and effective properties.This paper improves a workflow to focus on investigating the effect of pore structure on physical properties.First,a hybrid modeling approach combining process-based and morphology-based methods is proposed to reconstruct 3D models with diverse pore structure types.Then,the characteristics and differences in pore structure in these models are compared.Finally,the varia-tion laws and pore-scale mechanisms of the influence of pore structure on physical properties(permeability and elasticity)are discussed based on the reconstructed models.The relationship models between pore structure parameters and perme-ability/elastic parameters in the grain packing model are established.The effect of pore structure evolution on permeability/elasticity and the microscopic mechanism in three types of morphology-based reconstruction models are explored.The influence degree of pore structure on elastic parameters(bulk modulus,shear modulus,P-wave velocity,and S-wave veloc-ity)is quantified,reaching 29.54%,51.40%,18.94%,and 23.18%,respectively.This work forms a workflow for exploring the relationship between pore structures and petrophysical properties at the microscopic scale,providing more ideas and references for understanding the complex physical properties in porous media.
文摘A novel into-plane rotating rnicromirror actuated by a hybrid electrostatic driving structure is presented. The hybrid driving structure is made up of a planar plate drive and a vertical comb drive. The device is fabricated in SOI substrate by using a bulk-and-surface mixed silicon micromachining process. As demonstrated by experiment, the novel driving structure can actuate the mirror to achieve large-range continuous rotation as well as spontaneous 90°rotation induced by the pull-in effect. The continuous rotating range of the micromirror is increased to about 46° at an increased yielding voltage. The measured yielding voltages of the mirrors with torsional springs of 1 and 0.5μm in thickness are 390 - 410V and 140 - 160V, respectively. The optical insertion loss has also been measured to be --1.98dB when the mirror serves as an optical switch.
基金This work is supported by MOST of China (No.2011CB921403), the Chinese Academy of Science, and the National Natural Science Foundation of China (No.10874165, No.90921013, No.11074231, and No. 11004179).
文摘Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs- RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.
基金support from the National Institute of Biomedical Imaging and Bioengineering (5T32EB009035)
文摘MXenes,transition metal carbides and nitrides with graphene-like structures,have received considerable attention since their first discovery.On the other hand,Graphene has been extensively used in biomedical and medicinal applications.MXene and graphene,both as promising candidates of two-dimensional materials,have shown to possess high potential in future biomedical applications due to their unique physicochemical properties such as superior electrical conductivity,high biocompatibility,large surface area,optical and magnetic features,and extraordinary thermal and mechanical properties.These special structural,functional,and biological characteristics suggest that the hybrid/composite structure of MXene and graphene would be able to meet many unmet needs in different fields;particularly in medicine and biomedical engineering,where high-performance mechanical,electrical,thermal,magnetic,and optical requirements are necessary.However,the hybridization and surface functionalization should be further explored to obtain biocompatible composites/platforms with unique physicochemical properties,high stability,and multifunctionality.In addition,toxicological and long-term biosafety assessments and clinical translation evaluations should be given high priority in research.Although very limited studies have revealed the excellent potentials of MXene/graphene in biomedicine,the next steps should be toward the extensive research and detailed analysis in optimizing the properties and improving their functionality with a clinical and industrial outlook.Herein,different synthesis/fabrication methods and performances of MXene/graphene composites are discussed for potential biomedical applications.The potential toxicological effects of these composites on human cells and tissues are also covered,and future perspectives toward more successful translational applications are presented.The current state-of-the-art biotechnological advances in the use of MXene-Graphene composites,as well as their developmental challenges and future prospects are also deliberated.Due to the superior properties and multifunctionality of MXene-graphene composites,these hybrid structures can open up considerable new horizons in future of healthcare and medicine.
基金Supported by the National Natural Science Foundation of China (No.20436040) and Xi'an Municipal Project for Industrial Research (No. GG06015).
文摘A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61274074 and 61271070)the Key Research Program of Application Foundation and Advanced Technology of Tianjin,China(Grant No.11JCZDJC15300)
文摘In this work, we report an enhanced nitrogen dioxide(NO_2) gas sensor based on tungsten oxide(WO_3)nanowires/porous silicon(PS) decorated with gold(Au) nanoparticles. Au-loaded WO_3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy(HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO_3 nanowires. The effect of the Au nanoparticles on the NO_2-sensing performance of WO_3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO_2 at room temperature(25℃). It is found that the 10-? Au-loaded WO_3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO_3 nanowires/porous silicon is also discussed.
基金National Natural Science Foundation of China Under Grant No. 50708071National Basic Research of China Under Grant No. 2007CB714202+1 种基金National Key Technology R&D Program Under Grant No. 2006BAJ13B01Shanghai Educational Development Foundation Under Grant No. 2007CG27
文摘Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.
基金National Natural Science Foundation of China Under Grant No. 50025821
文摘Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to low-reversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.
基金supported by the National Natural Science Foundation of China (No. 52172218)the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2019WNLOKF017)。
文摘To develop highly active and low-cost electrocatalyst is very important to improve the efficiency of water splitting.However,the current catalysts still present serious challenges due to the poor intrinsic activity and high overpotential.Herein,we report several amino induced Co-based composite catalysts.As a structure-mediating agent,ethylenediamine (EDA) can not only regulate the crystal structure and but also provide many surface amino groups.The obtained ZnCo_(2)S_(4)/CoZn_(13) catalysts show an excellent oxygen evolution reaction (OER) performance (274 mV@50 mA cm^(-2)) and the overpotential of 160 mV at-10 mA cm^(-2) for hydrogen evolution reaction (HER).For electrolysis of water,the electrocatalysts deliver a cell voltage of 1.61 V at 50 m A cm^(-2).This study provides a facile synthetic strategy to construct advanced electrocatalysts for future applications.
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
基金Supported by the National Basic Research Program of China under Grant No 2011CB610300the National Natural Science Foundation of China under Grant Nos 11102148 and 11321062the Fundamental Research Funds for Central Universities of China
文摘We report an extraordinary sound absorption enhancement in low and intermediate frequencies achieved by a thin multi-slit hybrid structure formed by incorporating micrometer scale micro-slits into a sub-millimeter scale meso-slit matrix. Theoretical and numerical results reveal that this exotic phenomenon is attributed to the noticeable velocity and temperature gradients induced at the junctures of the micro- and meso-slits, which cause significant loss of sound energy as a result of viscous and thermal effects. It is demonstrated that the proposed thin multi-slit hybrid structure with micro-scale configuration is capable of controling low frequency noise with large wavelength, which is attractive for applications where the size and weight of a sound absorber are restricted.
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
文摘Owing to unprecedented climate change issues in recent times, global automotive industry is striving hard in developing novel functional materials to improve vehicle’s fuel efficiency. It is believed that more than a quarter of all combined greenhouse gas emissions (GHG) are associated with road transport vehicles. All these facts in association with heightened consumer awareness and energy security issues have led to automotive lightweighting as a major research theme across the globe. Almost all North American and European original equipment manufacturers (OEMs) related to automotive industry have chalked out ambitious weight reduction plans in response to stricter environmental regulations. This review entails main motives and current legislation which has prompted major OEMs to have drastic measures in bringing down vehicle weight to suggested limits. Also discussed are recent advances in developing advanced composites, and cellulose-enabled light weight automotive composites with special focus on research efforts of Center for Biocomposites and Biomaterials Processing (CBBP), University of Toronto, Canada.
基金Supported by the National Key Basic Research Program of China under Grant No 2013CB922304the National Natural Science Foundation of China under Grant Nos 11474275 and 11464034
文摘We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro- antenna directional emission effect for the hybrid metM-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photolumineseence (PL) intensity is very sensitive to the size of metMlic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
文摘Tissue culture seedlings of the hybrid Cymbidium were inoculated with six different fungal strains, isolated from the roots of different wild terrestrial orchids. About three months later, the average increment of fresh weight of seedlings inoculated with strains CF1, CF3 and CF12 were respectively 130.26%, 345.65% and 153.34% while that of the control was only 88.40%. The differences between the three treatments and the control were statistically significant (α = 0.05), highlighting the treatment with strain CF3 (α = 0.01). In addition, the three strains were obtained by re-isolating. Pelotons, regarded as typical structures of orchid mycorrhiza, were also found in the inoculating roots under a microscope. It seems that the strains of CF1, CF3, and CF12 are associated with the hybrid Cymbidium and supplied the orchid with nutrition. It can be confirmed that the three strains are beneficial for the seedlings of this hybrid.