期刊文献+
共找到2,434篇文章
< 1 2 122 >
每页显示 20 50 100
Molecular Dynamics Simulations of Silica Nanotube: Structural and Vibrational Properties Under Different Temperatures
1
作者 张胜利 张永红 +2 位作者 黄世萍 王鹏 田辉平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第5期497-503,621,共8页
Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the ... Four-, six-, and eight-membered ring silica nanotubes at temperatures from 300 K to 1600 K are relaxed by classical molecular dynamics simulations with three potential models. The simulation results indicate that the stability of the end rings of the three silica nanotubes gradually decreases with increase in temperature. The validity of the vibrational features of silica nanotubes is shown by the vibrational density of states. Infrared spectra on the silica nanotubes under different temperatures are investigated. A detailed assignment of each spectral peak to the corresponding vibrational mode of the three nanotubes has been addressed. The results are in good agreement with the other theoretical and experimental 展开更多
关键词 SiliCa nanotube Molecular dynamics structural property vibrational densityof state Infrared spectrum
下载PDF
Vibration Control of the Rail Grinding Vehicle with Abrasive Belt Based on Structural Optimization and Lightweight Design
2
作者 Wengang Fan Shuai Zhang +2 位作者 Zhiwei Wu Yi Liu Jiangnan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期311-337,共27页
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan... As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment. 展开更多
关键词 vibration control Dynamic characteristics structural optimization Lightweight design Modal analysis
下载PDF
Structural Dynamics in Biology: A Bridge Given by Implicit Vibratory Crossed Models
3
作者 Yves Gourinat Laura Christon Frédéric Lachaud 《Engineering(科研)》 2021年第5期237-256,共20页
This article proposes a synthesis and contribution at three levels: generation of dynamic equations of shell structures interacting with fluids, reduction of implicit resolution, and cross-applications to aerospace ta... This article proposes a synthesis and contribution at three levels: generation of dynamic equations of shell structures interacting with fluids, reduction of implicit resolution, and cross-applications to aerospace tanks and living systems. The synthesis of the equations is proposed around the four principles of thermodynamics at the level of discrete, structural and digitized systems. The implicit approach envisages an innovative analysis in terms of condensation and digitization, with in particular a perspective towards singular and integral methods. Some illustrations are proposed, in the field of performed research models and also in the fields of educational applications in biodynamics. The proposed bridge links, on one hand, the analytical Lagrange-Feynman’s approach, and on the other hand experimental results obtained in laboratory and numerical experiments obtained with multiphysics software. Finally, the realized models concern conservative and dissipative models for the active and passive control of complex systems, in a unified approach. 展开更多
关键词 vibrations Fluid Shell Interaction General dynamics Implicit dynamics structural Entropy BIOPHYSICS
下载PDF
Fast Tool for Structural Monitoring of a Pier After Impact of a Very Large Vessel Using Ambient Vibration Analysis
4
作者 Thiago Henrique Walnorio Ferreira Cláudio Martins 《Journal of Marine Science and Application》 CSCD 2021年第2期317-324,共8页
Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no ... Operational modal analysis is a non-destructive structural investigation that considers only the loads resulting from service conditions.This approach allows the measurement of vibrations on a given structure with no need to interrupt its use.The present work aims to develop a numerical model to represent the global structural behavior of a vessel breasting dolphin using a technique that is simple and cheap in order to obtain a fast answer about the stiffness of a pier after the collision of ships with capacity up to 400,000 t.To determine the modes of vibration,one accelerometer was installed on the breasting dolphin located on the pier and a frequency domain technic was conducted over recorded data to obtain modal parameters of the structure.In situ measurements were compared to data from a finite element model based on the original structural design in order to adapt the model to accurately represent the actual behavior of the system.This allowed a reliable structural analysis that accounted for existing structural damage and imperfections.The results of the experiment presented herein are the numerical characterization of the structure,along with the structural analysis to assess the degree of damage currently observed on the system.It is noted that the dolphin subjected to ship impacts presents a reduction in stiffness of approximately10%and its global damage level can be monitored from now after new accidents. 展开更多
关键词 structural health monitoring Ambient vibration analysis Natural frequency dynamics of structures Marine structures
下载PDF
Theoretical and experimental investigations on an X-shaped vibration isolator with active controlled variable stiffness
5
作者 Zeyu CHAI J.T.HAN +3 位作者 Xuyuan SONG Jian ZANG Yewei ZHANG Zhen ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1371-1386,共16页
A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under var... A novel X-shaped variable stiffness vibration isolator(X-VSVI)is proposed.The Runge-Kutta method,harmonic balance method,and wavelet transform spectra are introduced to evaluate the performance of the X-VSVI under various excitations.The layer number,the installation angle of the X-shaped structure,the stiffness,and the active control parameters are systematically analyzed.In addition,a prototype of the X-VSVI is manufactured,and vibration tests are carried out.The results show that the proposed X-VSVI has a superior adaptability to that of a traditional X-shaped mechanism,and shows excellent vibration isolation performance in response to different amplitudes and forms of excitations.Moreover,the vibration isolation efficiency of the device can be improved by appropriate adjustment of parameters. 展开更多
关键词 bionic vibration isolation X-shaped structure variable stiffness structure nonlinear dynamics prototype experiment
下载PDF
Dynamic analysis of a novel multilink-spring mechanism for vibration isolation and energy harvesting
6
作者 谢佳衡 杨涛 唐介 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期366-379,共14页
Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve t... Due to technical limitations,existing vibration isolation and energy harvesting(VIEH)devices have poor performance at low frequency.This paper proposes a new multilink-spring mechanism(MLSM)that can be used to solve this problem.The VIEH performance of the MLSM under harmonic excitation and Gaussian white noise was analyzed.It was found that the MLSM has good vibration isolation performance for low-frequency isolation and the frequency band can be widened by adjusting parameters to achieve a higher energy harvesting power.By comparison with two special cases,the results show that the MLSM is basically the same as the other two oscillators in terms of vibration isolation but has better energy harvesting performance under multistable characteristics.The MLSM is expected to reduce the impact of vibration on high-precision sensitive equipment in some special sites such as subways and mines,and at the same time supply power to structural health monitoring devices. 展开更多
关键词 multilink-spring mechanism nonlinear dynamics vibration isolation energy harvester
下载PDF
A Study on Technological Dynamics in Structural Health Monitoring Using Intelligent Fault Diagnosis Techniques:A Patent-Based Approach
7
作者 Saqlain Abbas Zulkarnain Abbas +1 位作者 Xiaotong Tu Yanping Zhu 《Journal on Artificial Intelligence》 2021年第3期97-113,共17页
The performance and reliability of structural components are greatly influenced by the presence of any abnormality in them.To this purpose,structural health monitoring(SHM)is recognized as a necessary tool to ensure t... The performance and reliability of structural components are greatly influenced by the presence of any abnormality in them.To this purpose,structural health monitoring(SHM)is recognized as a necessary tool to ensure the safety precautions and efficiency of both mechanical and civil infrastructures.Till now,most of the previous work has emphasized the functioning of several SHM techniques and systematic changes in SHM execution.However,there exist insufficient data in the literature regarding the patent-based technological developments in the SHM research domain which might be a useful source of detailed information for worldwide research institutes.To address this research gap,a method based on the Co-Operative Patent Classification(CPC)codes is proposed in the current study.The proposed method includes the patent analysis of SHM in terms of its global publication trend and technology-based applications.This analysis is performed using patent database search tools,namely,IncoPat and Espacenet.The period ranging from 2005 to 2019 is selected to retrieve the required patent documents.A new approach termed as Patents’value is utilized to investigate the technological impact of a patent in the form of forward citations,technical stability,and scope of protection.The identification of emerging SHM techniques and forecasting of vacant technology is also part of current research work.The research results have revealed the increasing trend in the number of published patents each year related to various SHM technologies.In this regard,China,the United States,and South Korea are notified as to the major depositor countries,respectively.Hence,mapping of patent data in this research is an effort to illustrate the effectiveness of the proposed method to demonstrate the development trends and dynamic inventions over the time in SHM research domain to achieve the optimal damage inspections of various mechanical components. 展开更多
关键词 structural health monitoring mechanical components patent analysis technological dynamics vacant technology forecast publication trend analysis
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
8
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure MICROSTRUCTURE forming mechanism
下载PDF
Fault Identification for Shear-Type Structures Using Low-Frequency Vibration Modes
9
作者 Cuihong Li Qiuwei Yang Xi Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2769-2791,共23页
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o... Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice. 展开更多
关键词 Fault diagnosis shear steel structure vibration mode dynamic flexibility frequency sensitivity
下载PDF
Vibration Suppression of Unbalanced Machines UsingLumped Mass Dynamic Vibration Absorber
10
作者 Charfeddine Mrad 《Journal of Mechanics Engineering and Automation》 2013年第2期93-98,共6页
The vibration of machines due to rotating parts unbalance disturbs the machine functioning and shortens the lifetime of its parts. A dynamic vibration absorber is a favorite solution to suppress the machine vibration ... The vibration of machines due to rotating parts unbalance disturbs the machine functioning and shortens the lifetime of its parts. A dynamic vibration absorber is a favorite solution to suppress the machine vibration since its implementation does not require any modification neither on the machine nor on its installation. The paper considers an unbalanced machine to which a lumped mass dynamic vibration absorber is attached. Firstly, the machine equipped with the absorber is modeled, and the vibration expressions are extracted. Secondly, an original approach to optimize the absorber parameters is presented, and simulation results are advanced, when the absorber is undamped and damped. Thirdly, the absorber optimal parameters allowing the best vibration reduction of the machine are identified, showing bow the absorber should be designed, when the disturbance frequency is stable or unstable. The results are a significant contribution in the vibration control of unbalanced machines. 展开更多
关键词 Unbalanced machines mechanical vibration vibration suppression dynamic vibration absorber parametersoptimization.
下载PDF
Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow 被引量:5
11
作者 ZHU Hong-jun LIN Peng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期301-311,共11页
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the... A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses. 展开更多
关键词 vortex-induced vibration flexible riser shear flow fluid–structure interaction computational fluid dynamics
下载PDF
The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion 被引量:4
12
作者 樊康旗 明正峰 +1 位作者 徐春辉 晁锋波 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期354-361,共8页
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic c... As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. 展开更多
关键词 piezoelectric conversion mechanical vibration charging dynamics electromechanical coupling
下载PDF
Atomic structure and collision dynamics with highly charged ions 被引量:1
13
作者 Xinwen Ma Shaofeng Zhang +11 位作者 Weiqiang Wen Zhongkui Huang Zhimin Hu Dalong Guo Junwen Gao Bennaceur Najjari Shenyue Xu Shuncheng Yan Ke Yao Ruitian Zhang Yong Gao Xiaolong Zhu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期13-40,共28页
The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The st... The research progresses on the investigations of atomic structure and collision dynamics with highly charged ions based on the heavy ion storage rings and electron ion beam traps in recent 20 years are reviewed.The structure part covers test of quantum electrodynamics and electron correlation in strong Coulomb field studied through dielectronic recombi-nation spectroscopy and VUV/x-ray spectroscopy.The collision dynamics part includes charge exchange dynamics in ion-atom collisions mainly in Bohr velocity region,ion-induced fragmentation mechanisms of molecules,hydrogen-bound and van de Waals bound clusters,interference,and phase information observed in ion-atom/molecule collisions.With this achievements,two aspects of theoretical studies related to low energy and relativistic energy collisions are presented.The applications of data relevant to key atomic processes like dielectronic recombination and charge exchanges involving highly charged ions are discussed.At the end of this review,some future prospects of research related to highly charged ions are proposed. 展开更多
关键词 highly charged ion atomic structure collision dynamics quantum electrodynamics fragmentation mechanisms relativistic effects electron correlation
下载PDF
Numerical Study on the Effect of Current Profiles on Vortex-Induced Vibrations in a Top-Tension Riser 被引量:4
14
作者 Bowen Fu Lu Zou Decheng Wan 《Journal of Marine Science and Application》 CSCD 2017年第4期473-479,共7页
In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodyn... In this paper, numerical simulations of vortex-induced vibrations in a vertical top-tension riser with a length-to-diameter ratio of 500 using our in-house code viv-FOAM-SJTU are presented. The time-dependent hydrodynamic forces on two-dimensional strips are obtained by solving the Navier-Stokes equations, which are, in turn, integrated into a finite-element structural model to obtain the riser deflections. The riser is discretized into 80 elements with its two ends set as pinned and 20 strips are located equidistant along the risers. Flow and structure are coupled by hydrodynamic forces and structural displacements. In order to study the effects of the shear rate, of the current profiles on the vortex-induced vibrations in the riser, vibrations, with varying shear rates, in both the in-line and cross-flow directions, are simulated. In addition to the time domain analysis, spectral analysis was conducted in both the temporal and spatial domains. Multi-mode vibration characteristics were observed in the riser. The relationship between dominant vibration mode number and the shear rate of current profiles is discussed. In general, the overall vibrations in the riser pipe include contributions from several modes and each mode persists over a range of shear rates. Moreover, the results suggest that with a larger shear rate the position of the maximum in-line time-averaged displacement will move closer to the end where the largest velocity is located. 展开更多
关键词 RISERS vortex-induced vibration MULTI-MODAL vibration STRIP theory computational fluid dynamics fluid-structure interaction
下载PDF
Modeling of cable vibration effects of cable-stayed bridges
15
作者 S.H.Cheng David T.Lau 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期74-85,共12页
The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the resp... The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generally considers only the motions of the bridge deck and pylons.The influence of the stay cable vibration on the responses of the bridge is either ignored or considered by approximate procedures.The transverse vibration of the stay cables,which can be significant in some cases,are usually neglected in previous research.In the present study,a new three-node cable element has been developed to model the transverse motions of the cables.The interactions between the cable behavior and the other parts of the bridge superstructure are considered by the concept of dynamic stiffness.The nonlinear effect of the cable caused by its self-weight is included in the formulation.Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model. The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed. 展开更多
关键词 cable-stayed bridges cable vibration dynamics finite elements long-span structures
下载PDF
ANALOGY BETWEEN TRANSFER MATRIX AND BOND GRAPH IN VIBRATION PROBLEMS
16
作者 胡允祥 《Journal of China Textile University(English Edition)》 EI CAS 1990年第3期41-46,共6页
In this paper we have disucced the analogy between transfer matrix and bond graph, chiefly asfollows: ① Power or energy flow is their common characteristic, ② Lumped masses and elasticmembers in transfer matrix just... In this paper we have disucced the analogy between transfer matrix and bond graph, chiefly asfollows: ① Power or energy flow is their common characteristic, ② Lumped masses and elasticmembers in transfer matrix just correspond respectively to the inertia and the capacitance elementsin the bond graph, ③ Point transfer matrix and field transfer matrix behave respectively as 1-and0-junction in bond graph, 展开更多
关键词 SYSTEM engieering vibration THEORETICAL mechanics BOND graph SYSTEM dynamics
下载PDF
APPLICATION OF MECHANICAL IMPEDANCE IN VIBRATION ANALYSIS
17
作者 胡允祥 《Journal of China Textile University(English Edition)》 EI CAS 1991年第1期31-38,共8页
In the network of a mechanical system,force F and velocity V are related by mechanicalimpedance Z as:Z=F/V.In this paper,we are going to discuss two cases:①Z=0,which gives the frequency equation of the system.We shal... In the network of a mechanical system,force F and velocity V are related by mechanicalimpedance Z as:Z=F/V.In this paper,we are going to discuss two cases:①Z=0,which gives the frequency equation of the system.We shall use this equation tosolve some practical examples;②Z=∞,which can serve as the design criterion of dynamic dampers. 展开更多
关键词 vibration MECHANICAL IMPEDANCE dynamics
下载PDF
Effects of Internal Flow on Vortex-Induced Vibration and Fatigue Life of Submarine Pipelines 被引量:3
18
作者 Shen Zhonghan and Zhao Qiang Professor, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080Applied and Computation Analysis and Modeling (ACAM) Program, Louisiana Tech University, PO Box 3827, LA 71272, USA 《China Ocean Engineering》 SCIE EI 1996年第3期251-260,共10页
With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show s... With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow. 展开更多
关键词 submarine oil/ gas pipelines Jlow in pipeline vortex-induced vibration structural dynamic responses fatigue life
下载PDF
Elastic period of vibration calculated experimentally in buildings hosting permanent GPS stations 被引量:2
19
作者 Marco Gatti 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期607-625,共19页
During the earthquake in Emilia(Italy) of 2012,ca.30 permanent GPS stations were in operation within a radius of about 100 km from the epicenter,each equipped with an antenna rigidly fixed to the host building and s... During the earthquake in Emilia(Italy) of 2012,ca.30 permanent GPS stations were in operation within a radius of about 100 km from the epicenter,each equipped with an antenna rigidly fixed to the host building and sampling the GPS signal at a high rate(〉 1 Hz).From the recording of the GPS measurements,the instantaneous displacements s(t) in the NorthSouth and East-West directions of the phase centers of the single GPS antennas at each permanent station during the most important seismic sequences were calculated in kinematic mode.Subsequently,for each of the two displacements considered as two distinct external forces,the elastic response spectra of the building were determined and from them the two periods of vibration T along two orthogonal directions coinciding with the walls of the building were extracted.The experimentally obtained periods of vibration were compared with those inferable from the technical literature.In this way,a sufficiently large sample was obtained per building type,geometry(square,rectangular,regular or irregular planimetry),height(from a minimum of 4 to a maximum of 20 m) and materials(masonry,reinforced concrete,etc.).From the computational point of view,the study confirmed that GPS is an emerging tool for monitoring dynamic displacements and the experimentally estimated value of T is always lower than the one estimated with the formulae reported in the literature.The limitations of the study lie in the impossibility to choose a priori the geometry and/or structural type of the building hosting the GPS station. 展开更多
关键词 permanent GPS stations Emilia-Romagna Italy earthquake PERIOD vibrations dynamic structure
下载PDF
THE DESIGN AND ANALYSIS OF VIBRATION STRUCTURE OF VERTICAL DYNAMIC BALANCING MACHINE 被引量:1
20
作者 LiDinggen CaoJiguang +1 位作者 WangJtmwen ChenChuanyao 《Acta Mechanica Solida Sinica》 SCIE EI 2004年第2期172-182,共11页
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona... A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines. 展开更多
关键词 vertical dynamic balancing machine vibration structure static unbalance coupled unbalance modal analysis harmonic response analysis
下载PDF
上一页 1 2 122 下一页 到第
使用帮助 返回顶部