The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of bu...The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.展开更多
Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperatur...Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperature reaches the maximum value and the Zr_(30)Cu_(60)Al_(10)owns high glass forming ability(GFA).Analysis of the short⁃range structure shows that there are more low⁃energy Zr⁃centered polyhedron with high coordination number(CN)and Cu and Al⁃centered coordination polyhedron with CN=12 in Zr_(30)Cu_(60_Al_(10)alloy.As the medium⁃range structure is concerned,Zr_(30)Cu_(60_Al_(10)alloy has the largest number of coordination polyhedron connection sharing three atoms and connection in this way presenting the lowest energy.These low⁃energy and stable short and medium⁃range structures contribute to the high GFA of Zr_(30)Cu_(60_Al_(10).展开更多
Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure mo...Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure models of three-phase seabed deposit, an equation of sound velocity is presented, which can describe the effect of structure of three-phase deposit on its acoustic velocity. Seen form the derived equation, the equations of the sound velocity of the deposits with different medium structures are different, the influence of the medium structure on the sound velocity is apparent. The equation in the paper provides the theoretical basis to understand the mechanics properties through sound velocity test, and it can be easily adopted in engineering. The influences of the parameters of deposits, void ratio, gas concentration and modulus on sound velocity through the deposit are investigated by numerical analysis of the acoustic velocity. Numerical result shows that the sound velocity of three-phase medium is affected by void ratio, gas concentration and body modulus, and the sound velocity generally increases with the gas concentration increasing. The results of the paper can be helpful to the acoustic method.展开更多
The mathematical models of relaxing media with a structure for describing nonlinear long-wave processes are explored. The wave processes in non-equilibrium heterogeneous media are studied in terms of the suggested asy...The mathematical models of relaxing media with a structure for describing nonlinear long-wave processes are explored. The wave processes in non-equilibrium heterogeneous media are studied in terms of the suggested asymptotic averaged model. On the microstructure level of the medium, the dynamical behavior is governed only by the laws of thermodynamics, while, on the macrolevel, the motion of the medium can be described by the wave-dynamical laws. It is proved rigorously that on the acoustic level, the propagation of long waves can be properly described only in terms of dispersive dissipative properties of the medium, and in this case, the dynamical behavior of the medium can be modeled by a homogeneous relaxing medium. At the same time, the dynamical behavior of the medium cannot be modeled by a homogeneous medium even for long waves, if they are nonlinear. For a finite-amplitude wave, the structure of medium produces nonlinear effects even if the individual components of the medium are described by a linear law. The heterogeneity of the structure of medium always introduces additional nonlinearity. It is shown that the solution of many problems for multi-component media with incompressible phases can be obtained through the known solution of a similar problem for a homogeneous compressible medium by means of the suggested transformation. It is not necessary to solve directly the problem for the medium with incompressible component, and it is sufficient just to transform the known solution of the similar problem for a homogeneous medium. The scope for the suggested transformation is demonstrated by the reference to the strong explosion state in a two-phase medium. The special attention is focused on the research of blast waves in multi-component media with thermal relaxation. The dependence of the shock damping parameters on the thermal relaxation time is analyzed in order to provide a deeper understanding of the damping of shock waves in such media and to determine their effectiveness as localizing media. This problem attracts the interest also in view of the practical possibility to estimate the efficiency of medium for damping the shock wave action. To find the nature of the relaxation interaction between the components of medium and to estimate the attenuation of shock waves generated by solid explosives, we have studied experimentally both the velocity field of shock waves and the pressure at front in an air foam. The comparison of experimental and theoretical investigations of the relaxation phenomena which accompany the propagation of shock waves in foam indicates that within the scope of relaxation hydrodynamics it is possible to explain the observed phenomena and estimate the efficiency of medium as localizer of the shock wave action.展开更多
The dynamic interaction problems of three-dimensional lineqr elastic structures with arbitrary shaped section embedded in a homogeneous, isotropic and linear elastic half space under dynamic disturbances are numerical...The dynamic interaction problems of three-dimensional lineqr elastic structures with arbitrary shaped section embedded in a homogeneous, isotropic and linear elastic half space under dynamic disturbances are numerically solved. The numerical method employed is a combination of the time domain semi-analytical boundary element method (SBEM) used for the semi-infinite soil medium and the semi-analytical finite element method (SFEM) used for the three-dimensional structure. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. Displacements, velocities, accelerations and interaction forces at the interface between underground structure and soil medium produced by the diffraction of wave by an underground structure for every time step are obtained. In dynamic soil-structure interaction problems, it is advantageous to combine the SBEM and the SFEM in an effort to produce an optimum numerical hybrid scheme which is characterized by the main advantages of the two methods. The effects of the thickness, the ratio of length and diameter of underground structure and the soil medium on dynamic responses are discussed.展开更多
Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the fi...Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the first confirmation of the discoveries of galaxies, quasars and Gamma-Ray Bursts at z 〉 7, with possible detections at z - 10. There is also mounting evidence that cosmic reionization is a prolonged pro- cess that peaks around z - 10 and ends at z- 6 - 7. Observations of the highest redshift intergalactic medium and the most metal-poor stars in the Galaxy begin to constrain the earliest chemical enrichment processes in the Universe. These observa- tions provide a glimpse of cosmic history over the first billion years after the Big Bang. In this review, we will present recent results on the observations of the high-redshift Universe over the past decade, highlight key challenges and uncertainties in these observations, and preview what is possible with the next generation facilities in studying the first light and mapping the history of reionization.展开更多
文摘The main concern of this paper is to provide an extensive study for the structural behavior of low/medium/high rise office buildings aiming to deepen structure and architect designers understanding for such type of buildings. The study is performed on reinforced concrete and emphasized only on Kuwait city conditions for wind. Regular layout plan building with different heights ranging from five to fifty typical office stories are investigated in this study. Three dimensional finite element techniques through ETABS software are used in conducting analysis for structures presented here-in. A serviceability study is performed to ensure that buildings have sufficient stability to limit lateral drift and peak acceleration within the acceptable range of occupancy comfort. In addition, an ultimate strength study is carried out to design and verify that all the structural elements are designed to withstand factored gravity and lateral loadings in a safe manner according to the international building codes. The building slenderness ratio and the building core size and location are the studied parameters since they are the key drivers for the efficient structural design. Analysis results are presented and discussed and finally conclusions are summarized as guidelines for designers of concrete office buildings in Kuwait.
文摘Classical molecular dynamics(MD)were conducted to study the structure and energy distribution of Zr_(x)Cu_(90-x)Al_(10)(x=20,30,40,50,60,70)ternary alloys.When the Zr composition is 30%,the glass transition temperature reaches the maximum value and the Zr_(30)Cu_(60)Al_(10)owns high glass forming ability(GFA).Analysis of the short⁃range structure shows that there are more low⁃energy Zr⁃centered polyhedron with high coordination number(CN)and Cu and Al⁃centered coordination polyhedron with CN=12 in Zr_(30)Cu_(60_Al_(10)alloy.As the medium⁃range structure is concerned,Zr_(30)Cu_(60_Al_(10)alloy has the largest number of coordination polyhedron connection sharing three atoms and connection in this way presenting the lowest energy.These low⁃energy and stable short and medium⁃range structures contribute to the high GFA of Zr_(30)Cu_(60_Al_(10).
文摘Based on the former research, the mechanism of the influence of the medium structure on the sound velocity of the three-phase seabed deposit is discussed by theoretical method. Through analysis of several structure models of three-phase seabed deposit, an equation of sound velocity is presented, which can describe the effect of structure of three-phase deposit on its acoustic velocity. Seen form the derived equation, the equations of the sound velocity of the deposits with different medium structures are different, the influence of the medium structure on the sound velocity is apparent. The equation in the paper provides the theoretical basis to understand the mechanics properties through sound velocity test, and it can be easily adopted in engineering. The influences of the parameters of deposits, void ratio, gas concentration and modulus on sound velocity through the deposit are investigated by numerical analysis of the acoustic velocity. Numerical result shows that the sound velocity of three-phase medium is affected by void ratio, gas concentration and body modulus, and the sound velocity generally increases with the gas concentration increasing. The results of the paper can be helpful to the acoustic method.
文摘The mathematical models of relaxing media with a structure for describing nonlinear long-wave processes are explored. The wave processes in non-equilibrium heterogeneous media are studied in terms of the suggested asymptotic averaged model. On the microstructure level of the medium, the dynamical behavior is governed only by the laws of thermodynamics, while, on the macrolevel, the motion of the medium can be described by the wave-dynamical laws. It is proved rigorously that on the acoustic level, the propagation of long waves can be properly described only in terms of dispersive dissipative properties of the medium, and in this case, the dynamical behavior of the medium can be modeled by a homogeneous relaxing medium. At the same time, the dynamical behavior of the medium cannot be modeled by a homogeneous medium even for long waves, if they are nonlinear. For a finite-amplitude wave, the structure of medium produces nonlinear effects even if the individual components of the medium are described by a linear law. The heterogeneity of the structure of medium always introduces additional nonlinearity. It is shown that the solution of many problems for multi-component media with incompressible phases can be obtained through the known solution of a similar problem for a homogeneous compressible medium by means of the suggested transformation. It is not necessary to solve directly the problem for the medium with incompressible component, and it is sufficient just to transform the known solution of the similar problem for a homogeneous medium. The scope for the suggested transformation is demonstrated by the reference to the strong explosion state in a two-phase medium. The special attention is focused on the research of blast waves in multi-component media with thermal relaxation. The dependence of the shock damping parameters on the thermal relaxation time is analyzed in order to provide a deeper understanding of the damping of shock waves in such media and to determine their effectiveness as localizing media. This problem attracts the interest also in view of the practical possibility to estimate the efficiency of medium for damping the shock wave action. To find the nature of the relaxation interaction between the components of medium and to estimate the attenuation of shock waves generated by solid explosives, we have studied experimentally both the velocity field of shock waves and the pressure at front in an air foam. The comparison of experimental and theoretical investigations of the relaxation phenomena which accompany the propagation of shock waves in foam indicates that within the scope of relaxation hydrodynamics it is possible to explain the observed phenomena and estimate the efficiency of medium as localizer of the shock wave action.
文摘The dynamic interaction problems of three-dimensional lineqr elastic structures with arbitrary shaped section embedded in a homogeneous, isotropic and linear elastic half space under dynamic disturbances are numerically solved. The numerical method employed is a combination of the time domain semi-analytical boundary element method (SBEM) used for the semi-infinite soil medium and the semi-analytical finite element method (SFEM) used for the three-dimensional structure. The two methods are combined through equilibrium and compatibility conditions at the soil-structure interface. Displacements, velocities, accelerations and interaction forces at the interface between underground structure and soil medium produced by the diffraction of wave by an underground structure for every time step are obtained. In dynamic soil-structure interaction problems, it is advantageous to combine the SBEM and the SFEM in an effort to produce an optimum numerical hybrid scheme which is characterized by the main advantages of the two methods. The effects of the thickness, the ratio of length and diameter of underground structure and the soil medium on dynamic responses are discussed.
基金supported by a David and Lucile Packard Fellowshipthe US National Science Foundation (NSF) Grants AST 08-06861 and AST 11-07682
文摘Studying the first generation of stars, galaxies and supermassive black holes as well as the epoch of reionization is one of the fundamental questions of modern as- trophysics. The last few years have witnessed the first confirmation of the discoveries of galaxies, quasars and Gamma-Ray Bursts at z 〉 7, with possible detections at z - 10. There is also mounting evidence that cosmic reionization is a prolonged pro- cess that peaks around z - 10 and ends at z- 6 - 7. Observations of the highest redshift intergalactic medium and the most metal-poor stars in the Galaxy begin to constrain the earliest chemical enrichment processes in the Universe. These observa- tions provide a glimpse of cosmic history over the first billion years after the Big Bang. In this review, we will present recent results on the observations of the high-redshift Universe over the past decade, highlight key challenges and uncertainties in these observations, and preview what is possible with the next generation facilities in studying the first light and mapping the history of reionization.