Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-lik...Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals.展开更多
Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes....Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.展开更多
A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from...A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.展开更多
This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm th...This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.展开更多
Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and t...Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and the motion representation of an entire structure is very challenging.This study proposes a novel Nodes2STRNet for structural dense displacement recognition using a handful of structural control nodes based on a deformable structural three-dimensional mesh model,which consists of control node estimation subnetwork(NodesEstimate)and pose parameter recognition subnetwork(Nodes2PoseNet).NodesEstimate calculates the dense optical flow field based on FlowNet 2.0 and generates structural control node coordinates.Nodes2PoseNet uses structural control node coordinates as input and regresses structural pose parameters by a multilayer perceptron.A self-supervised learning strategy is designed with a mean square error loss and L2 regularization to train Nodes2PoseNet.The effectiveness and accuracy of dense displacement recognition and robustness to light condition variations are validated by seismic shaking table tests of a four-story-building model.Comparative studies with image-segmentation-based Structure-PoseNet show that the proposed Nodes2STRNet can achieve higher accuracy and better robustness against light condition variations.In addition,NodesEstimate does not require retraining when faced with new scenarios,and Nodes2PoseNet has high self-supervised training efficiency with only a few control nodes instead of fully supervised pixel-level segmentation.展开更多
ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuratio...ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.展开更多
The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the ind...The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the induced continuous-discontinuous(C-D)deformation fields are challenges to their numerical simulation.In this study,a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time.With the help of a developed voxel crack model,image models that are efficient when recording complex geometries are directly imported into the simulation.Surface reconstructions,which are usually labor-intensive,are excluded from this approach.Moreover,using image models as the geometric input,image processing techniques are applied to detect material interfaces and develop contact pairs.Then,the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method.The accuracy and convergence of the developed3D approach are examined based on multiple benchmarks.Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach.展开更多
A new cyclic pseudo-elimination(CPE,in brief)preconditioner,which combines the pseudoelimination(PE)technique and LU factorization together,is proposed for a kind of cyclic structured matrices.For the case of M-matric...A new cyclic pseudo-elimination(CPE,in brief)preconditioner,which combines the pseudoelimination(PE)technique and LU factorization together,is proposed for a kind of cyclic structured matrices.For the case of M-matrices,some theoretical results of convergence and estimation of the condition number are presented.Numerical experiments show that the CPE preconditioner performs the best with respect to the reduction of number of iterations.Moreover,it costs much less time than the ILUT and block Jacobi(BJ)preconditioners in a whole in all tested cases.展开更多
In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this pape...In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.展开更多
文摘Novel sandwich structure-like nanofiber multilayered meshes were fabricated via electrospinning. The purpose of the present work was to control zoledronic acid release via the novel structure of sandwich structure-like meshes. The in vitro release experiments reveal that the drug release speed and initial burst release were controllable by adjusting the thicknesses of electrospun barrier mesh and drug-loaded mesh. Compared with those of other drug delivery systems, the main advantages of the sandwich structure-like fiber meshes are facile preparation conditions and the generality for hydrophobic and hydrophilic pharmaceuticals.
基金Project supported by the National Basic Research Program of China(No.2009CB724104)
文摘Efficient and robust solution strategies are developed for discontinuous Galerkin (DG) discretization of the Navier-Stokes (NS) and Reynolds-averaged NS (RANS) equations on structured/unstructured hybrid meshes. A novel line-implicit scheme is devised and implemented to reduce the memory gain and improve the computational eificiency for highly anisotropic meshes. A simple and effective technique to use the mod- ified Baldwin-Lomax (BL) model on the unstructured meshes for the DC methods is proposed. The compact Hermite weighted essentially non-oscillatory (HWENO) limiters are also investigated for the hybrid meshes to treat solution discontinuities. A variety of compressible viscous flows are performed to examine the capability of the present high- order DG solver. Numerical results indicate that the designed line-implicit algorithms exhibit weak dependence on the cell aspect-ratio as well as the discretization order. The accuracy and robustness of the proposed approaches are demonstrated by capturing com- plex flow structures and giving reliable predictions of benchmark turbulent problems.
基金This project is supported by National Natural Science Foundation ofChina(No.l9832020) and National Outstanding Youth Science Foundation ofChina(No.10125208).
文摘A physical value mapping (PVM) algorithm based on finite element mesh from the stamped part in stamping process to the product is presented, In order to improve the efficiency of the PVM algorithm, a search way from the mesh of the product to the mesh of the stamped part will be adopted. At the same time, the search process is divided into two steps: entire search (ES) and local search (LS), which improve the searching efficiency. The searching area is enlarged to avoid missing projection elements in ES process. An arc-length method is introduced in LS process. The validity is confirmed by the results of the complex industry-forming product.
基金Project supported by the Creative Foundation of Wuhan National Laboratory for Optoelectronics (Grant No. Z080007)partly by the National Basic Research Program of China (973 Program)(Grant No. 61328)
文摘This paper reports that an output window for optically pumped terahertz (THz) laser has been fabricated by depositing a capacitive nickel-mesh on a thick high-resistivity silicon substrate (approximating to 5 mm thick). Unlike the conventional process of depositing a gold film approximating to 100 nm on negative photoresist using electron-beam evaporation, a nickel film approximating to 1.5 μm thick is directly deposited on the clean surface of dielectric substrate using magnetron sputtering and then a positive photoresist is spun onto the nickel metal surface at 6000 r for 60 s. A transmittance spectrum of the output window in a certain frequency range (say, from zero to 1 THz) has been obtained by using THz time domain spectroscopy. Moreover a transmittance spectrum simulated numerically has also been estimated with respect to the output window using the transmission-line model (TLM) containing attenuation component from dielectric substrate. The simulation results show that the TLM can explain well the experimental curve in a certain frequency range from zero to 1 THz. Thus it is demonstrated that the improved optical component can be efficiently used as both output coupler and output window for optically pumped THz lasers.
文摘Displacement is a critical indicator for mechanical systems and civil structures.Conventional vision-based displacement recognition methods mainly focus on the sparse identification of limited measurement points,and the motion representation of an entire structure is very challenging.This study proposes a novel Nodes2STRNet for structural dense displacement recognition using a handful of structural control nodes based on a deformable structural three-dimensional mesh model,which consists of control node estimation subnetwork(NodesEstimate)and pose parameter recognition subnetwork(Nodes2PoseNet).NodesEstimate calculates the dense optical flow field based on FlowNet 2.0 and generates structural control node coordinates.Nodes2PoseNet uses structural control node coordinates as input and regresses structural pose parameters by a multilayer perceptron.A self-supervised learning strategy is designed with a mean square error loss and L2 regularization to train Nodes2PoseNet.The effectiveness and accuracy of dense displacement recognition and robustness to light condition variations are validated by seismic shaking table tests of a four-story-building model.Comparative studies with image-segmentation-based Structure-PoseNet show that the proposed Nodes2STRNet can achieve higher accuracy and better robustness against light condition variations.In addition,NodesEstimate does not require retraining when faced with new scenarios,and Nodes2PoseNet has high self-supervised training efficiency with only a few control nodes instead of fully supervised pixel-level segmentation.
基金supported by the National Natural Science Foundation of China(10472003)Beijing Natural Science(3002002)+1 种基金Beijing Educational Committee Foundations(KM200410005019)Suspensofled by American MSC Company.
文摘ICM (Independent Continuous Mapping) method can solve topological optimization problems with the minimized weight as the objective and subjected to displacement constraints. To get a clearer topological configuration, by introducing the discrete condition of topological variables and integrating with the original objective, an optimal model with multi-objectives is formulated to make the topological variables approach 0 or 1 as near as possible, and the model reduces the effect of deleting rate on the result. The image-filtering method is employed to eliminate the checkerboard patterns and mesh dependence that occurred in the topology optimization of a continuum structure. The computational efficiency is enhanced through selecting quasi-active displacement constraints and a design region. Numerical examples indicate that this algorithm is robust and practicable, though the number of iterations is slightly increased with respect to the original algorithm.
基金supported by the National Natural Science Foundation of China(Grant Nos.41807277,42172306,and U1965204)the Natural Science Foundation of Hebei Province(Grant No.D2019202440)。
文摘The numerical simulation of internal features,such as inclusions and voids,is important to analyze their impact on the performance of composite materials.However,the complex geometries of internal features and the induced continuous-discontinuous(C-D)deformation fields are challenges to their numerical simulation.In this study,a 3D approach using a simple mesh to simulate irregular internal geometries is developed for the first time.With the help of a developed voxel crack model,image models that are efficient when recording complex geometries are directly imported into the simulation.Surface reconstructions,which are usually labor-intensive,are excluded from this approach.Moreover,using image models as the geometric input,image processing techniques are applied to detect material interfaces and develop contact pairs.Then,the C-D deformations of the complex internal features are directly calculated based on the numerical manifold method.The accuracy and convergence of the developed3D approach are examined based on multiple benchmarks.Successful 3D C-D simulation of sandstones with naturally formed complex microfeatures demonstrates the capability of the developed approach.
基金Supported by the National Natural Science Foundation of China(Grant Nos.61472462,11671049)Science Challenge Project(Grant No.TZ2016002)the CAEP Developing Fund of Science Technology(Grant No.CX20210021)。
文摘A new cyclic pseudo-elimination(CPE,in brief)preconditioner,which combines the pseudoelimination(PE)technique and LU factorization together,is proposed for a kind of cyclic structured matrices.For the case of M-matrices,some theoretical results of convergence and estimation of the condition number are presented.Numerical experiments show that the CPE preconditioner performs the best with respect to the reduction of number of iterations.Moreover,it costs much less time than the ILUT and block Jacobi(BJ)preconditioners in a whole in all tested cases.
基金Project supported by the National Natural Science Foundation of China(No.51775506)the Zhejiang Provincial Natural Science Foundation of China(No.LY18E050022)+2 种基金the Public Welfare Technology Application Research Project of Zhejiang Province(Nos.LGG19E050022 and 2017C33115)the Zhejiang Provincial Science&Technology Project for Medicine&Health(No.2018KY878)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering of Hangzhou Dianzi University,China
文摘In maxillofacial surgery, there is a significant need for the design and fabrication of porous scaffolds with customizable bionic structures and mechanical properties suitable for bone tissue engineering. In this paper, we characterize the porous Ti6Al4V implant, which is one of the most promising and attractive biomedical applications due to the similarity of its modulus to human bones. We describe the mechanical properties of this implant, which we suggest is capable of providing important biological functions for bone tissue regeneration. We characterize a novel bionic design and fabrication process for porous implants. A design concept of “reducing dimensions and designing layer by layer” was used to construct layered slice and rod-connected mesh structure (LSRCMS) implants. Porous LSRCMS implants with different parameters and porosities were fabricated by selective laser melting (SLM). Printed samples were evaluated by microstructure characterization, specific mechanical properties were analyzed by mechanical tests, and finite element analysis was used to digitally calculate the stress characteristics of the LSRCMS under loading forces. Our results show that the samples fabricated by SLM had good structure printing quality with reasonable pore sizes. The porosity, pore size, and strut thickness of manufactured samples ranged from (60.95± 0.27)% to (81.23±0.32)%,(480±28) to (685±31)μm, and (263±28) to (265±28)μm, respectively. The compression results show that the Young’s modulus and the yield strength ranged from (2.23±0.03) to (6.36±0.06) GPa and (21.36±0.42) to (122.85±3.85) MPa, respectively. We also show that the Young’s modulus and yield strength of the LSRCMS samples can be predicted by the Gibson-Ashby model. Further, we prove the structural stability of our novel design by finite element analysis. Our results illustrate that our novel SLM-fabricated porous Ti6Al4V scaffolds based on an LSRCMS are a promising material for bone implants, and are potentially applicable to the field of bone defect repair.