期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
Vibration Control of the Rail Grinding Vehicle with Abrasive Belt Based on Structural Optimization and Lightweight Design
1
作者 Wengang Fan Shuai Zhang +2 位作者 Zhiwei Wu Yi Liu Jiangnan Yu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期311-337,共27页
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan... As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment. 展开更多
关键词 Vibration control Dynamic characteristics structural optimization Lightweight design Modal analysis
下载PDF
A strategy for lightweight designing of a railway vehicle car body including composite material and dynamic structural optimization 被引量:2
2
作者 Alessio Cascino Enrico Meli Andrea Rindi 《Railway Engineering Science》 2023年第4期340-350,共11页
Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative mat... Rolling stock manufacturers are finding structural solutions to reduce power required by the vehicles,and the lightweight design of the car body represents a possible solution.Optimization processes and innovative materials can be combined in order to achieve this goal.In this framework,we propose the redesign and optimization process of the car body roof for a light rail vehicle,introducing a sandwich structure.Bonded joint was used as a fastening system.The project was carried out on a single car of a modern tram platform.This preliminary numerical work was developed in two main steps:redesign of the car body structure and optimization of the innovated system.Objective of the process was the mass reduction of the whole metallic structure,while the constraint condition was imposed on the first frequency of vibration of the system.The effect of introducing a sandwich panel within the roof assembly was evaluated,focusing on the mechanical and dynamic performances of the whole car body.A mass saving of 63%on the optimized components was achieved,corresponding to a 7.6%if compared to the complete car body shell.In addition,a positive increasing of 17.7%on the first frequency of vibration was observed.Encouraging results have been achieved in terms of weight reduction and mechanical behaviour of the innovated car body. 展开更多
关键词 structural dynamic optimization Car body lightweight design Railway vehicle dynamics Railway car body engineering Railway vehicle design Composite materials
下载PDF
Structural design of the fluted shaped charge liner using multi-section optimization method
3
作者 Shengjie Sun Jianwei Jiang +2 位作者 Shuyou Wang Jianbing Men Mei Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期249-262,共14页
Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study,... Spin effect of the small diameter shaped charge results in the centrifugal stress during the jet stretching process. Consequently, the jet scatters, which deceases the jet penetration capability. In the present study, a multi-section method was proposed to design the spin-compensation liner. The spincompensation rate(SCR) of the liner was defined as the specific angular velocity that a fluted liner can offset. Based on the plain stress theory, SPH numerical method was applied to study the converging process of the 2D fluted structure. The spin-compensation mechanism of the fluted structure was illustrated. Then, nine cross sections were chosen along the liner axis equidistantly. On each of the section, a 2D fluted structure was designed to offset a given initial angular velocity. After, the optimized fluted structures were integrated into a 3D fluted liner. Jet appearances of the normal liner and the fluted liners under different initial angular velocities were compared, which verifies the practicality of the multi-sectional method. The multi-section optimization method provides a new efficient method of designing the shaped charge liner for a specific usage. 展开更多
关键词 Fluted liner Spin-compensation SPH structural optimization
下载PDF
A Modified Bi-Directional Evolutionary Structural Optimization Procedure with Variable Evolutionary Volume Ratio Applied to Multi-Objective Topology Optimization Problem
4
作者 Xudong Jiang Jiaqi Ma Xiaoyan Teng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第4期511-526,共16页
Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective... Natural frequency and dynamic stiffness under transient loading are two key performances for structural design related to automotive,aviation and construction industries.This article aims to tackle the multi-objective topological optimization problem considering dynamic stiffness and natural frequency using modified version of bi-directional evolutionary structural optimization(BESO).The conventional BESO is provided with constant evolutionary volume ratio(EVR),whereas low EVR greatly retards the optimization process and high EVR improperly removes the efficient elements.To address the issue,the modified BESO with variable EVR is introduced.To compromise the natural frequency and the dynamic stiffness,a weighting scheme of sensitivity numbers is employed to form the Pareto solution space.Several numerical examples demonstrate that the optimal solutions obtained from the modified BESO method have good agreement with those from the classic BESO method.Most importantly,the dynamic removal strategy with the variable EVR sharply springs up the optimization process.Therefore,it is concluded that the modified BESO method with variable EVR can solve structural design problems using multi-objective optimization. 展开更多
关键词 Bi-directional evolutionary structural optimization variable evolutionary volume ratio multi-objective optimization weighted sum topology optimization
下载PDF
A Smooth Bidirectional Evolutionary Structural Optimization of Vibrational Structures for Natural Frequency and Dynamic Compliance
5
作者 Xiaoyan Teng Qiang Li Xudong Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2479-2496,共18页
A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dyn... A smooth bidirectional evolutionary structural optimization(SBESO),as a bidirectional version of SESO is proposed to solve the topological optimization of vibrating continuum structures for natural frequencies and dynamic compliance under the transient load.A weighted function is introduced to regulate the mass and stiffness matrix of an element,which has the inefficient element gradually removed from the design domain as if it were undergoing damage.Aiming at maximizing the natural frequency of a structure,the frequency optimization formulation is proposed using the SBESO technique.The effects of various weight functions including constant,linear and sine functions on structural optimization are compared.With the equivalent static load(ESL)method,the dynamic stiffness optimization of a structure is formulated by the SBESO technique.Numerical examples show that compared with the classic BESO method,the SBESO method can efficiently suppress the excessive element deletion by adjusting the element deletion rate and weight function.It is also found that the proposed SBESO technique can obtain an efficient configuration and smooth boundary and demonstrate the advantages over the classic BESO technique. 展开更多
关键词 Topology optimization smooth bi-directional evolutionary structural optimization(SBESO) eigenfrequency optimization dynamic stiffness optimization
下载PDF
Fluid-Dynamics Analysis and Structural Optimization of a 300 kW MicroGas Turbine Recuperator
6
作者 Weiting Jiang Tingni He +2 位作者 Chongyang Wang Weiguo Pan Jiang Liu 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1447-1461,共15页
Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowte... Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowtemperature channels are performed and,the calculated results are compared with experimental data(to verify the reliability of the numerical method).Second,the flow field structure of the low-temperature side channel is critically analyzed,leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven,and its resistance is significantly higher than that in the high-temperature side.Therefore,five alternate structural schemes are proposed for the optimization of the low-temperature side.In particular,to reduce the flow velocity in the upper channel,the rib length of each channel at the inlet of the low-temperature side region is adjusted.The performances of the 5 schemes are compared,leading to the identification of the configuration able to guarantee a uniform flow rate and minimize the pressure drop.Finally,the heat transfer performance of the optimized recuperator structure is evaluated,and it is shown that the effectiveness of the recuperator is increased by 1.5%. 展开更多
关键词 Micro gas turbine RECUPERATOR structural optimization numerical simulation
下载PDF
A Simple and Efficient Structural Topology Optimization Implementation Using Open-Source Software for All Steps of the Algorithm:Modeling, Sensitivity Analysis and Optimization
7
作者 Rafael Marin Ferro Renato Pavanello 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1371-1397,共27页
This work analyzes the implementation of a continuous method of structural topology optimization(STO)using open-source software for all stages of the topology optimization problem:modeling,sensitivity analysis and opt... This work analyzes the implementation of a continuous method of structural topology optimization(STO)using open-source software for all stages of the topology optimization problem:modeling,sensitivity analysis and optimization.Its implementation involves three main components:numerical analysis using the Finite Element Method(FEM),sensitivity analysis using an Adjoint method and an optimization solver.In order to allow the automated numerical solution of Partial Differential Equations(PDEs)and perform a sensitivity analysis,FEniCS and Dolfin Adjoint software are used as tools,which are open-source code.For the optimization process,Ipopt(Interior Point OPTimizer)is used,which is a software package for nonlinear optimization scale designed to find(local)solutions of mathematical optimization problems.The topological optimization method used is based on the SIMP-Solid IsotropicMaterial with Penalization interpolation.The considered problem is the minimization of compliance/maximization of stiffness,considering the examples of recurrent structures in the literature in 2D and 3D.A density filtering algorithm based on Helmholtz formulation is used.The complete code involves 51 lines of programming and is presented and commented in detail in this article. 展开更多
关键词 structural topology optimization finite element method FEniCS Dolfin Adjoint
下载PDF
APPROXIMATION TECHNIQUES FOR APPLICATION OF GENETIC ALGORITHMS TO STRUCTURAL OPTIMIZATION 被引量:1
8
作者 金海波 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期147-154,共8页
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str... Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model. 展开更多
关键词 approximation techniques segment approximation model genetic algorithms structural optimization sensitivity analysis
下载PDF
A novel triple periodic minimal surface-like plate lattice and its data-driven optimization method for superior mechanical properties
9
作者 Yanda WANG Yanping LIAN +2 位作者 Zhidong WANG Chunpeng WANG Daining FANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期217-238,共22页
Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM... Lattice structures can be designed to achieve unique mechanical properties and have attracted increasing attention for applications in high-end industrial equipment,along with the advances in additive manufacturing(AM)technologies.In this work,a novel design of plate lattice structures described by a parametric model is proposed to enrich the design space of plate lattice structures with high connectivity suitable for AM processes.The parametric model takes the basic unit of the triple periodic minimal surface(TPMS)lattice as a skeleton and adopts a set of generation parameters to determine the plate lattice structure with different topologies,which takes the advantages of both plate lattices for superior specific mechanical properties and TPMS lattices for high connectivity,and therefore is referred to as a TPMS-like plate lattice(TLPL).Furthermore,a data-driven shape optimization method is proposed to optimize the TLPL structure for maximum mechanical properties with or without the isotropic constraints.In this method,the genetic algorithm for the optimization is utilized for global search capability,and an artificial neural network(ANN)model for individual fitness estimation is integrated for high efficiency.A set of optimized TLPLs at different relative densities are experimentally validated by the selective laser melting(SLM)fabricated samples.It is confirmed that the optimized TLPLs could achieve elastic isotropy and have superior stiffness over other isotropic lattice structures. 展开更多
关键词 lattice structure triple periodic minimal surface(TPMS) plate lattice structural optimization machine learning
下载PDF
Highly selective photocatalytic reduction of CO_(2) to CH_(4) on electron-rich Fe species cocatalyst under visible light irradiation
10
作者 Qianying Lin Jiwu Zhao +8 位作者 Pu Zhang Shuo Wang Ying Wang Zizhong Zhang Na Wen Zhengxin Ding Rusheng Yuan Xuxu Wang Jinlin Long 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期255-266,共12页
Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrat... Efficient photocatalytic reduction of CO_(2) to high-calorific-value CH4,an ideal target product,is a blueprint for C_(1)industry relevance and carbon neutrality,but it also faces great challenges.Herein,we demonstrate unprecedented hybrid SiC photocatalysts modified by Fe-based cocatalyst,which are prepared via a facile impregnation-reduction method,featuring an optimized local electronic structure.It exhibits a superior photocatalytic carbon-based products yield of 30.0μmol g^(−1) h^(−1) and achieves a record CH_(4) selectivity of up to 94.3%,which highlights the effectiveness of electron-rich Fe cocatalyst for boosting photocatalytic performance and selectivity.Specifically,the synergistic effects of directional migration of photogenerated electrons and strongπ-back bonding on low-valence Fe effectively strengthen the adsorption and activation of reactants and intermediates in the CO_(2)→CH_(4) pathway.This study inspires an effective strategy for enhancing the multielectron reduction capacity of semiconductor photocatalysts with low-cost Fe instead of noble metals as cocatalysts. 展开更多
关键词 artificial synthesis of CH_(4) electronic structure optimization Fe species cocatalyst photocatalytic CO_(2) reduction SiC
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
11
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Genetic Optimization via Diverse Crossover Intelligence
12
作者 David Webb Eric Sandgren 《Journal of Applied Mathematics and Physics》 2024年第8期2885-2903,共19页
An intelligent crossover methodology within the genetic algorithm (GA) is explored within both mathematical and finite element arenas improving both design and solution convergence time. This improved intelligent cros... An intelligent crossover methodology within the genetic algorithm (GA) is explored within both mathematical and finite element arenas improving both design and solution convergence time. This improved intelligent crossover outperforms the traditional genetic algorithm combined with a rule-based approach utilizing domain specific knowledge developed by Webb, et al. [1]. The encoding of the improved crossover consists of two chromosome strings within the genetic algorithm where the first string represents the design or solution string, and the second string represents chromosome crossover string intelligence. This improved crossover methodology saves the best population members or designs evaluated from each generation and applies crossover chromosome intelligence to the best saved population members paired with globally selected parents. Enhanced features of this crossover methodology employ the random selection of the best designs from the prior generation as a potential parent coupled with alternating intelligence pairing methods. In addition to this approach, two globally selected parents possess the ability to mate utilizing crossover chromosome string intelligence maintaining the integrity of a global GA search. Overall, the final population following crossover employs both global and best generation design chromosome strings to maximize creativity while enhancing the solution search. This is a modification to a conventional GA that can be translated into GA encoding. This technique is explored initially through a Base 10 mathematical application followed by the examination of plate structural optimization considering stress and displacement constraints. Results from crossover intelligence are compared with the conventional genetic algorithm and from Webb, et al. [1] which illustrates the outcome of a two phase genetic optimization algorithm. 展开更多
关键词 CROSSOVER Topological Design structural Optimization Genetic Optimization Variable Material Design
下载PDF
Study on the Changes of Medical Income Structure in Governmentrun Hospitals of Traditional Chinese Medicine from 2012 to 2021
13
作者 Song Yamei 《Asian Journal of Social Pharmacy》 2024年第2期178-190,共13页
Objective To study the changing characteristics and trend of medical income structure in the government-run hospitals of traditional Chinese medicine(TCM),evaluate the effects of relevant reform measures,and to put fo... Objective To study the changing characteristics and trend of medical income structure in the government-run hospitals of traditional Chinese medicine(TCM),evaluate the effects of relevant reform measures,and to put forward corresponding suggestions for further optimizing their income structure.Methods The data related to the average medical income of government-run hospitals of TCM from 2012 to 2021 were sorted out.Then,descriptive analysis method was used to analyze the changes of related indicators.Besides,structural change method was applied to investigate the changes of outpatient income and inpatient income.Results and Conclusion From 2012 to 2021,the growth of medical income in government-run hospitals of TCM tended to be stable,and the proportion of medical service income increased from 22.62%(2012)to 29.38%(2021),but the average annual growth rate was only 0.68%.The main items that caused the change of outpatient income structure were medicine revenue,laboratory tests,diagnosis and treatment,and the cumulative contribution rate was 89.15%.The main items that caused the change of inpatient income structure were medicine revenue,sanitary materials,and auxiliary examinations income,with a cumulative contribution rate of 80.04%.However,the contribution rate of registration,diagnosis,treatment,surgery and nursing income reflecting the value of medical personnel’s technical labor was relatively small.The medical income structure of government-run hospitals of TCM underwent great changes and gradually became reasonable,but the medical service income increased slowly,and not all indicators achieved the expectations.To promote the sustainable development of public hospitals of TCM and enable them to provide high-quality and efficient TCM medical and health services,it is necessary to further improve the relevant policy mechanism. 展开更多
关键词 government-run hospitals of traditional Chinese medicine medical expenses structure optimization sustainable development
下载PDF
Recent development in structural design and optimization 被引量:47
14
作者 Xu Guo·Geng-Dong Cheng State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology, Dalian 116023,China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期807-823,共17页
With the fast development of computational mechanics and the capacity as well as the speed of modern computers,simulation-based structural optimization has become an indispensable tool in the design process of competi... With the fast development of computational mechanics and the capacity as well as the speed of modern computers,simulation-based structural optimization has become an indispensable tool in the design process of competitive products.This paper presents a brief description of the current status of structural optimization by reviewing some significant progress made in the last decades.Potential research topics are also discussed.The entire literatures of the field are not covered due to the limitation of the length of paper.The scope of this review is limited and closely related to the authors' own research interests. 展开更多
关键词 structural optimization MULTI-SCALE UNCERTAINTY MULTI-PHYSICS SOFTWARE
下载PDF
Composite Structural Optimization by Genetic Algorithm and Neural Network Response Surface Modeling 被引量:13
15
作者 徐元铭 李烁 荣晓敏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第4期310-316,共7页
Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to s... Neural-Network Response Surfaces (NNRS) is applied to replace the actual expensive finite element analysis during the composite structural optimization process. The Orthotropic Experiment Method (OEM) is used to select the most appropriate design samples for network training. The trained response surfaces can either be objective function or constraint conditions. Together with other conven- tional constraints, an optimization model is then set up and can be solved by Genetic Algorithm (GA). This allows the separation between design analysis modeling and optimization searching. Through an example of a hat-stiffened composite plate design, the weight response surface is constructed to be objective function, and strength and buckling response surfaces as constraints; and all of them are trained through NASTRAN finite element analysis. The results of optimization study illustrate that the cycles of structural analysis ean be remarkably reduced or even eliminated during the optimization, thus greatly raising the efficiency of optimization process. It also observed that NNRS approximation can achieve equal or even better accuracy than conventional functional response surfaces. 展开更多
关键词 neural network genetic algorithm response surface composite structural optimization
下载PDF
Optimal Structural Design of the Midship of a VLCC Based on the Strategy Integrating SVM and GA 被引量:11
16
作者 Li Sun (1) welqi1986@gmail.com Deyu Wang (1) 《Journal of Marine Science and Application》 2012年第1期59-67,共9页
In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of sh... In this paper a hybrid process of modeling and optimization, which integrates a support vector machine (SVM) and genetic algorithm (GA), was introduced to reduce the high time cost in structural optimization of ships. SVM, which is rooted in statistical learning theory and an approximate implementation of the method of structural risk minimization, can provide a good generalization performance in metamodeling the input-output relationship of real problems and consequently cuts down on high time cost in the analysis of real problems, such as FEM analysis. The GA, as a powerful optimization technique, possesses remarkable advantages for the problems that can hardly be optimized with common gradient-based optimization methods, which makes it suitable for optimizing models built by SVM. Based on the SVM-GA strategy, optimization of structural scantlings in the midship of a very large crude carrier (VLCC) ship was carried out according to the direct strength assessment method in common structural rules (CSR), which eventually demonstrates the high efficiency of SVM-GA in optimizing the ship structural scantlings under heavy computational complexity. The time cost of this optimization with SVM-GA has been sharply reduced, many more loops have been processed within a small amount of time and the design has been improved remarkably. 展开更多
关键词 very large crude carrier (VLCC) structural scantlings structural optimization METAMODEL supportvector machine (SVM) genetic algorithms (GA) double-hull oil tanker common structural rules (CSR)
下载PDF
New Knowledge-based Genetic Algorithm for Excavator Boom Structural Optimization 被引量:6
17
作者 HUA Haiyan LIN Shuwen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期392-401,共10页
Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization... Due to the insufficiency of utilizing knowledge to guide the complex optimal searching, existing genetic algorithms fail to effectively solve excavator boom structural optimization problem. To improve the optimization efficiency and quality, a new knowledge-based real-coded genetic algorithm is proposed. A dual evolution mechanism combining knowledge evolution with genetic algorithm is established to extract, handle and utilize the shallow and deep implicit constraint knowledge to guide the optimal searching of genetic algorithm circularly. Based on this dual evolution mechanism, knowledge evolution and population evolution can be connected by knowledge influence operators to improve the conflgurability of knowledge and genetic operators. Then, the new knowledge-based selection operator, crossover operator and mutation operator are proposed to integrate the optimal process knowledge and domain culture to guide the excavator boom structural optimization. Eight kinds of testing algorithms, which include different genetic operators, arc taken as examples to solve the structural optimization of a medium-sized excavator boom. By comparing the results of optimization, it is shown that the algorithm including all the new knowledge-based genetic operators can more remarkably improve the evolutionary rate and searching ability than other testing algorithms, which demonstrates the effectiveness of knowledge for guiding optimal searching. The proposed knowledge-based genetic algorithm by combining multi-level knowledge evolution with numerical optimization provides a new effective method for solving the complex engineering optimization problem. 展开更多
关键词 boom structural optimization dual evolution mechanism knowledge-based genetic strategies deep implicit knowledge domain culture
下载PDF
Dynamic Analysis and Structural Optimization of a Novel Palletizing Robot 被引量:3
18
作者 李金泉 丁洪生 +2 位作者 段冰蕾 南倩 付铁 《Journal of Beijing Institute of Technology》 EI CAS 2010年第3期274-278,共5页
A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equa... A novel palletizing robot is presented and developed.By using the Newton-Euler method and the principle that the instantaneous inertial force system could be transformed into a static system,the force equilibrium equations of the whole robot and its subsystem were derived and the robot's dynamic models were established.After that,an example simulation was performed by using Matlab software and the structural optimization of the robot's key parts were discussed and analyzed in ANSYS platform.The results show that the dynamic models are correct and can be helpful for the design,validation and kinetic control based on dynamics of this kind of palletizing robots. 展开更多
关键词 Newton-Euler method palletizing robot inertial force DYNAMICS structural optimization
下载PDF
Different effects of economic and structural performance indexes on model construction of structural topology optimization 被引量:5
19
作者 G.L.Yi Y.K.Sui 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期777-788,共12页
The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of str... The objective and constraint functions related to structural optimization designs are classified into economic and performance indexes in this paper.The influences of their different roles in model construction of structural topology optimization are also discussed.Furthermore,two structural topology optimization models,optimizing a performance index under the limitation of an economic index,represented by the minimum compliance with a volume constraint(MCVC)model,and optimizing an economic index under the limitation of a performance index,represented by the minimum weight with a displacement constraint(MWDC)model,are presented.Based on a comparison of numerical example results,the conclusions can be summarized as follows:(1)under the same external loading and displacement performance conditions,the results of the MWDC model are almost equal to those of the MCVC model;(2)the MWDC model overcomes the difficulties and shortcomings of the MCVC model;this makes the MWDC model more feasible in model construction;(3)constructing a model of minimizing an economic index under the limitations of performance indexes is better at meeting the needs of practical engineering problems and completely satisfies safety and economic requirements in mechanical engineering,which have remained unchanged since the early days of mechanical engineering. 展开更多
关键词 Economic index Performance index structural topology optimization models MCVC model MWDC model Safety and economy
下载PDF
Topology Optimization with Aperiodic Load Fatigue Constraints Based on Bidirectional Evolutionary Structural Optimization 被引量:2
20
作者 Yongxin Li Guoyun Zhou +2 位作者 Tao Chang Liming Yang Fenghe Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期499-511,共13页
Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirect... Because of descriptive nonlinearity and computational inefficiency,topology optimization with fatigue life under aperiodic loads has developed slowly.A fatigue constraint topology optimization method based on bidirectional evolutionary structural optimization(BESO)under an aperiodic load is proposed in this paper.In viewof the severe nonlinearity of fatigue damagewith respect to design variables,effective stress cycles are extracted through transient dynamic analysis.Based on the Miner cumulative damage theory and life requirements,a fatigue constraint is first quantified and then transformed into a stress problem.Then,a normalized termination criterion is proposed by approximatemaximum stress measured by global stress using a P-normaggregation function.Finally,optimization examples show that the proposed algorithm can not only meet the requirements of fatigue life but also obtain a reasonable configuration. 展开更多
关键词 Topology optimization bidirectional evolutionary structural optimization aperiodic load fatigue life stress constraint
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部