Polypharmacology,which focuses on designing drugs to target multiple receptors,has emerged as a new paradigm in drug discovery.To rationally design multi-target drugs,it is fundamental to understand protein-ligand int...Polypharmacology,which focuses on designing drugs to target multiple receptors,has emerged as a new paradigm in drug discovery.To rationally design multi-target drugs,it is fundamental to understand protein-ligand interactions on a proteome scale.We have developed a Proteome-wide Off-target Pipeline (POP) that integrates ligand binding site analysis,protein-ligand docking,the statistical analysis of docking scores,and electrostatic potential calculations.The utility of POP is demonstrated by a case study,in which the molecular mechanism of anti-cancer effect of Nelfinavir is hypothesized.By combining structural proteome-wide off-target identification and systems biology,it is possible for us to correlate drug perturbations with clinical outcomes.展开更多
基金supported by the National Institutes of Health GM078596High Performance Computing Center at The City University of New York
文摘Polypharmacology,which focuses on designing drugs to target multiple receptors,has emerged as a new paradigm in drug discovery.To rationally design multi-target drugs,it is fundamental to understand protein-ligand interactions on a proteome scale.We have developed a Proteome-wide Off-target Pipeline (POP) that integrates ligand binding site analysis,protein-ligand docking,the statistical analysis of docking scores,and electrostatic potential calculations.The utility of POP is demonstrated by a case study,in which the molecular mechanism of anti-cancer effect of Nelfinavir is hypothesized.By combining structural proteome-wide off-target identification and systems biology,it is possible for us to correlate drug perturbations with clinical outcomes.