期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS 被引量:13
1
作者 Deng Guohe 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2007年第2期127-137,共11页
Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure ri... Using Fourier inversion transform, P.D.E. and Feynman-Kac formula, the closedform solution for price on European call option is given in a double exponential jump-diffusion model with two different market structure risks that there exist CIR stochastic volatility of stock return and Vasicek or CIR stochastic interest rate in the market. In the end, the result of the model in the paper is compared with those in other models, including BS model with numerical experiment. These results show that the double exponential jump-diffusion model with CIR-market structure risks is suitable for modelling the real-market changes and very useful. 展开更多
关键词 double exponential distribution jump-diffusion model market structure risk
下载PDF
SVD-LSSVM and its application in chemical pattern classification 被引量:2
2
作者 TAO Shao-hui CHEN De-zhao HU Wang-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1942-1947,共6页
Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selectin... Pattern classification is an important field in machine learning; least squares support vector machine (LSSVM) is a powerful tool for pattern classification. A new version of LSSVM, SVD-LSSVM, to save time of selecting hyper parameters for LSSVM is proposed. SVD-LSSVM is trained through singular value decomposition (SVD) of kernel matrix. Cross validation time of selecting hyper parameters can be saved because a new hyper parameter, singular value contribution rate (SVCR), replaces the penalty factor of LSSVM. Several UCI benchmarking data and the Olive classification problem were used to test SVD-LSSVM. The result showed that SVD-LSSVM has good performance in classification and saves time for cross validation. 展开更多
关键词 Pattern classification structural risk minimization Least squares support vector machine (LSSVM) Hyper pa-rameter selection Cross validation Singular value decomposition (SVD)
下载PDF
Research on Natural Gas Short-Term Load Forecasting Based on Support Vector Regression 被引量:1
3
作者 刘涵 刘丁 +1 位作者 郑岗 梁炎明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第5期732-736,共5页
Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Mac... Natural gas load forecasting is a key process to the efficient operation of pipeline network. An accurate forecast is required to guarantee a balanced network operation and ensure safe gas supply at a minimum cost.Machine learning techniques have been increasingly applied to load forecasting. A novel regression technique based on the statistical learning theory, support vector machines (SVM), is investigated in this paper for natural gas shortterm load forecasting. SVM is based on the principle of structure risk minimization as opposed to the principle of empirical risk minimization in conventional regression techniques. Using a data set with 2 years load values we developed prediction model using SVM to obtain 31 days load predictions. The results on city natural gas short-term load forecasting show that SVM provides better prediction accuracy than neural network. The software package natural gas pipeline networks simulation and load forecasting (NGPNSLF) based on support vector regression prediction has been developed, which has also been applied in practice. 展开更多
关键词 structure risk minimization support vector machines support vectorregression load forecasting neural network
下载PDF
Yarn Properties Prediction Based on Machine Learning Method 被引量:1
4
作者 杨建国 吕志军 李蓓智 《Journal of Donghua University(English Edition)》 EI CAS 2007年第6期781-786,共6页
Although many works have been done to construct prediction models on yarn processing quality,the relation between spinning variables and yarn properties has not been established conclusively so far.Support vector mach... Although many works have been done to construct prediction models on yarn processing quality,the relation between spinning variables and yarn properties has not been established conclusively so far.Support vector machines(SVMs),based on statistical learning theory,are gaining applications in the areas of machine learning and pattern recognition because of the high accuracy and good generalization capability.This study briefly introduces the SVM regression algorithms,and presents the SVM based system architecture for predicting yarn properties.Model selection which amounts to search in hyper-parameter space is performed for study of suitable parameters with grid-research method.Experimental results have been compared with those of artificial neural network(ANN)models.The investigation indicates that in the small data sets and real-life production,SVM models are capable of remaining the stability of predictive accuracy,and more suitable for noisy and dynamic spinning process. 展开更多
关键词 machine learning support vector machines artificial neural networks structure risk minimization yarn quality prediction
下载PDF
Existence and Uniqueness of Positive Solutions for a System of Multi-order Fractional Differential Equations 被引量:3
5
作者 Dai Qun Li Hui-lai Liu Su-li 《Communications in Mathematical Research》 CSCD 2016年第3期249-258,共10页
In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent... In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent, give its numerical characteristics and the ruin probability of the individual risk model in the surplus process. In addition, we promote the number of insurance policies to a Poisson process with parameter λ, using martingale methods to obtain the upper bound of the ultimate ruin probability. 展开更多
关键词 ruin probability dependent structure individual risk model Poisson process
下载PDF
Improved twin support vector machine 被引量:6
6
作者 TIAN YingJie JU XuChan +1 位作者 QI ZhiQuan SHI Yong 《Science China Mathematics》 SCIE 2014年第2期417-432,共16页
We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian ... We improve the twin support vector machine(TWSVM)to be a novel nonparallel hyperplanes classifier,termed as ITSVM(improved twin support vector machine),for binary classification.By introducing the diferent Lagrangian functions for the primal problems in the TWSVM,we get an improved dual formulation of TWSVM,then the resulted ITSVM algorithm overcomes the common drawbacks in the TWSVMs and inherits the essence of the standard SVMs.Firstly,ITSVM does not need to compute the large inverse matrices before training which is inevitable for the TWSVMs.Secondly,diferent from the TWSVMs,kernel trick can be applied directly to ITSVM for the nonlinear case,therefore nonlinear ITSVM is superior to nonlinear TWSVM theoretically.Thirdly,ITSVM can be solved efciently by the successive overrelaxation(SOR)technique or sequential minimization optimization(SMO)method,which makes it more suitable for large scale problems.We also prove that the standard SVM is the special case of ITSVM.Experimental results show the efciency of our method in both computation time and classification accuracy. 展开更多
关键词 support vector machine twin support vector machine nonparallel structural risk minimization CLASSIFICATION
原文传递
Hierarchical Polytope ARTMAP for Supervised Learning
7
作者 廖鑫鹏 吴永强 韩崇昭 《Journal of Computer Science & Technology》 SCIE EI CSCD 2010年第5期1071-1082,共12页
The recent Polytope ARTMAP(PTAM) suggests that irregular polytopes are more flexible than the predefined category geometries to approximate the borders among the desired output predictions.However,category expansion... The recent Polytope ARTMAP(PTAM) suggests that irregular polytopes are more flexible than the predefined category geometries to approximate the borders among the desired output predictions.However,category expansion and adjustment steps without statistical information make PTAM not robust to noise and category overlap.In order to push the learning problem towards Structural Risk Minimization(SRM),this paper proposes Hierarchical Polytope ARTMAP (HPTAM) to use a hierarchical structure with different levels,which are determined by the complexity of regions incorporating the input pattern.Besides,overlapping of simplexes from the same desired prediction is designed to reduce category proliferation.Although HPTAM is still inevitably sensible to noisy outliers in the presence of noise,main experimental results show that HPTAM can achieve a balance between representation error and approximation error,which ameliorates the overall generalization capabilities. 展开更多
关键词 structural risk minimization polytope ARTMAP hierarchical structure representation error approximation error
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部