期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Structural Topic Model for Exploring User Satisfaction with Mobile Payments
1
作者 Jang Hyun Kim Jisung Jang +1 位作者 Yonghwan Kim Dongyan Nan 《Computers, Materials & Continua》 SCIE EI 2022年第11期3815-3826,共12页
This study explored user satisfaction with mobile payments by applying a novel structural topic model.Specifically,we collected 17,927 online reviews of a specific mobile payment(i.e.,PayPal).Then,we employed a struct... This study explored user satisfaction with mobile payments by applying a novel structural topic model.Specifically,we collected 17,927 online reviews of a specific mobile payment(i.e.,PayPal).Then,we employed a structural topic model to investigate the relationship between the attributes extracted from online reviews and user satisfaction with mobile payment.Consequently,we discovered that“lack of reliability”and“poor customer service”tend to appear in negative reviews.Whereas,the terms“convenience,”“user-friendly interface,”“simple process,”and“secure system”tend to appear in positive reviews.On the basis of information system success theory,we categorized the topics“convenience,”“user-friendly interface,”and“simple process,”as system quality.In addition,“poor customer service”was categorized as service quality.Furthermore,based on the previous studies of trust and security,“lack of reliability”and“secure system”were categorized as trust and security,respectively.These outcomes indicate that users are satisfied when they perceive that system quality and security of specific mobile payments are great.On the contrary,users are dissatisfied when they feel that service quality and reliability of specific mobile payments is lacking.Overall,our research implies that a novel structural topic model is an effective method to explore mobile payment user experience. 展开更多
关键词 Mobile payment user satisfaction online review structural topic model
下载PDF
A bibliometric analysis using machine learning to track paradigm shifts and analytical advances in forest ecology and forestry journal publications from 2010 to 2022
2
作者 Jin Zhao Liyu Li +4 位作者 Jian Liu Yimei Yan Qian Wang Chris Newman Youbing Zhou 《Forest Ecosystems》 SCIE CSCD 2024年第5期770-779,共10页
Forest habitats are critical for biodiversity,ecosystem services,human livelihoods,and well-being.Capacity to conduct theoretical and applied forest ecology research addressing direct(e.g.,deforestation)and indirect(e... Forest habitats are critical for biodiversity,ecosystem services,human livelihoods,and well-being.Capacity to conduct theoretical and applied forest ecology research addressing direct(e.g.,deforestation)and indirect(e.g.,climate change)anthropogenic pressures has benefited considerably from new field-and statistical-techniques.We used machine learning and bibliometric structural topic modelling to identify 20 latent topics comprising four principal fields from a corpus of 16,952 forest ecology/forestry articles published in eight ecology and five forestry journals between 2010 and 2022.Articles published per year increased from 820 in 2010 to 2,354 in 2021,shifting toward more applied topics.Publications from China and some countries in North America and Europe dominated,with relatively fewer articles from some countries in West and Central Africa and West Asia,despite globally important forest resources.Most study sites were in some countries in North America,Central Asia,and South America,and Australia.Articles utilizing R statistical software predominated,increasing from 29.5%in 2010 to 71.4%in 2022.The most frequently used packages included lme4,vegan,nlme,MuMIn,ggplot2,car,MASS,mgcv,multcomp and raster.R was more often used in forest ecology than applied forestry articles.R software offers advantages in script and workflow-sharing compared to other statistical packages.Our findings demonstrate that the disciplines of forest ecology/forestry are expanding both in number and scope,aided by more sophisticated statistical tools,to tackle the challenges of redressing forest habitat loss and the socio-economic impacts of deforestation. 展开更多
关键词 Forest ecology FORESTRY R software structural topic modelling Machine learning PUBLICATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部