Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.I...Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.展开更多
Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineat...Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineate structural elements such as fractures and determine the ground water zones which could be pin-pointed for water borehole drilling. Thirty-three(33) Vertical Electrical Sounding(VES) along seven traverse lines using the展开更多
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this ...Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.展开更多
1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness ...1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.展开更多
Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems wi...Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems will restrict the improvement of athletes’cognitive ability and mental level.Based on the theory of psychology,use multiple hierarchical thinking,research cognitive theory of sports and the characteristics of cognitive ability of elite athletes,research the structure element system of cognitive ability,construct a two-level structure model of the cognitive ability of excellent athletes,summarize specific characteristics of the first level elements,and apply psychological cognitive theory to the training of modern Olympic Games mobilization,so as to provide valuable cognitive training,psychological training,and intelligence training for athletes theoretical guidance.展开更多
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat...The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in ge...Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.展开更多
Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is establish...Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.展开更多
The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the...The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.展开更多
Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method o...Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.展开更多
The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the s...The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the similarity and diversity of vector. The comprehensive opinions of expert panel are quantitatively obtained by considering the effect ofcredit degree. According to the geological structural setting, the Bohai Sea is di- vided into twelve assessment zones of structural stability by non-uniform element method. The structural stability grade of each zone is obtained on the basis of the latest geophysical data, earthquake statistical data, and the information of fault activities, current stress field and crustal deformation. The results show that there are one relatively stable area, three relatively sub-stable areas, six relatively sub-unstable areas and two relatively unstable areas. The assessment results of non-uniform element method are very close with those of uniform grid method with size of 0.25 in longitude direction and 0.14 in latitude direction. However the workload of non-uniform element method is only 1 / 16 of the latter. Compared with traditional assessment methods of structural stability, a more objective and reliable assessment result can be obtained by combining non-uniform element method and AHP-GDM model.展开更多
The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditio...The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.展开更多
The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues...The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues is solved completely. To improve the computational efficiency, the reduction system is obtained based on Lanczos vectors. After incorporating the mathematical theory with the Lanczos algorithm, the approximate sensitivity solution can be obtained. A numerical example is presented to illustrate the performance of the method.展开更多
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe...The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.展开更多
A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of non...A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls,respectively.A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls.The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel bars embedded in reinforced concrete elements,which are developed based on beam-on-springs model,and validated with experimental tests of boundary elements of structural walls available in the literature.Six experimental case studies of reinforced concrete walls with rectangularshape,T-shape,and U-shape cross-section are used to validate the structural wall numerical modeling strategy.展开更多
Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural stren...Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural strength of a tri-floater floating foundation supporting a 2.6 MW Darrieus VAWT. Finite element models of the floating foundation were developed using space plate-beam elements. The environmental loads, such as the aerodynamic loads, static wind loads, and wave-current loads, were considered. The general strengths of the floating foundation were calculated for the normal operating case(a cut-out wind speed of 25 m s^(-1) and blade rotation of 12 r min^(-1) were used to analyze the most unfavorable loads) and an extreme case(wind speed of 40 m s^(-1) and parked blades), and the weak components of the structure were analyzed. The results show that the floating foundation meets the strength requirements and the structural stress is highest when the wave, wind, and current are in a collinear direction. The main and secondary supporting bars transmit the loads between the stand columns and the tower foundation, and their stresses are higher than those in the other components. In the actual design, these supporting bars should be strengthened. The aerodynamic loads are very important and should be considered in the structural strength analysis of the floating foundation and the floating wind turbine system.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
基金This paper was funded by the following:National Natural Science Foundation of China(51974317,51904302,52034009)Yue Qi Distinguished Scholar Project(800015Z1179,800015Z1138)China University of Mining and Technology(Beijing)and the Fundamental Research Funds for the Central Universities(2020YQNY06).
文摘Numerical simulation is a useful tool in investigating the loading performance of rock bolts.The cable structural elements(cableSELs)in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues.In this study,the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model.Furthermore,the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs.Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts.Based on the modified cableSELs,the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied.The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently.With the bolt diameter increasing,the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour.Moreover,after the rock bolt was loaded,the position where the maximum shear stress occurred was variable.Specifically,with the continuous loading,it shifted from the rock bolt loaded end to the other end.
文摘Electrical resistivity survey was carried out as part of an integrated study of a portion of Federal University of Technology Akure,Campus,South-- western Nigeria—a Basement terrain,to unravel the rock types;delineate structural elements such as fractures and determine the ground water zones which could be pin-pointed for water borehole drilling. Thirty-three(33) Vertical Electrical Sounding(VES) along seven traverse lines using the
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
基金This work presented in this paper was funded by the National Natural Science Foundation of China(Grant Nos.51478031 and 51278046)Shenzhen Science and Technology Innovation Fund(Grant No.FA24405041).The authors are grateful to the editor and reviewers for discerning comments on this paper.
文摘Structural planes play an important role in controlling the stability of rock engineering,and the influence of structural planes should be considered in the design and construction process of rock engineering.In this paper,mechanical properties,constitutive theory,and numerical application of structural plane are studied by a combination method of laboratory tests,theoretical derivation,and program development.The test results reveal the change laws of various mechanical parameters under different roughness and normal stress.At the pre-peak stage,a non-stationary model of shear stiffness is established,and threedimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed.The nonlinear constitutive models are established based on elasto-plastic mechanics,and the algorithms of the models are developed based on the return mapping algorithm.According to a large number of statistical analysis results,empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters.Finally,the discrete element method(DEM)is chosen to embed the constitutive models for practical application.The running programs of the constitutive models have been compiled into the discrete element model library.The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages,and the predicted shear strength,peak strain and shear stiffness are closer to the test results.The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering.
基金This paper expands on work conducted during the 2005-2006 summer aca-demic recesses while the author was a visitor at CIMNE(Centro Internacional de Métodos Numéricos en Ingenieria)at Barcelona,SpainThe visits were partly supported by fellowships awarded by the Spanish Ministerio de Educación y Cultura during May-June of those years,and partly by the National Science Foundation under grant High-Fidelity Simulations for Heteroge-neous Civil and Mechanical Systems,CMS-0219422。
文摘1 This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement shape functions.The method of templates is used to investigate the construction of accurate mass-stiffness pairs.This method introduces free parameters that can be adjusted to customize elements according to accuracy and rank-sufficiency criteria.One-and two-dimensional Lagrangian cubic elements with only translational degrees of freedom(DOF)carry two additional nodes on each side,herein called side nodes or SN.Although usually placed at the third-points,the SN location may be adjusted within geometric limits.The adjustment effect is studied in detail using symbolic computations for a bar element.The best SN location is taken to be that producing accurate approximation to the lowest natural frequencies of the continuum model.Optimality is investigated through Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements.Focus is placed on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram.It is found that dispersion results using the fully integrated consistent mass matrix(CMM)are independent of the SN location whereas its lowfrequency accuracy order is O(κ8),whereκis the dimensionless wave number.For the diagonally lumped mass matrix(DLMM)constructed through the HRZ scheme,two optimal SN locations are identified,both away from third-points and of accuracy order O(κ8).That with the smallest error coefficient corresponds to the Lobatto 4-point integration rule.A special linear combination of CMM and DLMM with nodes at the Lobatto points yields an accuracy of O(κ10)without any increase in the computational effort over CMM.The effect of reduced integration(RI)on both mass and stiffness matrices is also studied.It is shown that singular mass matrices can be constructed with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case,at the cost of introducing spurious modes.The optimal SN location in two-dimensional,bicubic,isoparametric plane stress quadrilateral elements is briefly investigated by numerical experiments.The frequency accuracy of flexural modes is found to be fairly insensitive to that position,whereas for bar-like modes it agrees with the one-dimensional results.
基金Thanks to Professor Korobeynikov Georgiy of National University of Physical Education and Sports of Ukraine.Thanks to Professor Chen Jinsong of Jiangsu Ocean University of Chinathanks for your support and help.
文摘Cognitive ability is important component of competitive ability of athletes,an important content of winning elements in sports,and an important topic of modern sports training and scientific research.These problems will restrict the improvement of athletes’cognitive ability and mental level.Based on the theory of psychology,use multiple hierarchical thinking,research cognitive theory of sports and the characteristics of cognitive ability of elite athletes,research the structure element system of cognitive ability,construct a two-level structure model of the cognitive ability of excellent athletes,summarize specific characteristics of the first level elements,and apply psychological cognitive theory to the training of modern Olympic Games mobilization,so as to provide valuable cognitive training,psychological training,and intelligence training for athletes theoretical guidance.
基金the National Natural Science Foundation of China(No.11572210).
文摘The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
文摘Aim To present a quantitative method for structural complexity analysis and evaluation of information systems. Methods Based on Petri net modeling and analysis techniques and with the aid of mathematical tools in general net theory(GNT), a quantitative method for structure description and analysis of information systems was introduced. Results The structural complexity index and two related factors, i.e. element complexity factor and connection complexity factor were defined, and the relations between them and the parameters of the Petri net based model of the system were derived. Application example was presented. Conclusion The proposed method provides a theoretical basis for quantitative analysis and evaluation of the structural complexity and can be applied in the general planning and design processes of the information systems.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA04Z416)the National Science Fund for Distinguished Young Scholars(No.50725828)
文摘Based on the engineering background of the Jiangxinzhou Bridge in Nanjing, issues related to the spatial main saddle of the self-anchored suspension bridge are studied. The refinement finite element model is established by the secondary development technology based on the platform of the general finite element program, and a reasonable load pattern is used in its spatial structural analysis, by which its path of force transference and stress distribution are obtained. Matched with the spatial main cable, the tangency point correction method is also discussed. The results show that the lateral wall stress of the saddle groove is higher than the stress within the wall due to the role of lateral forces in the finished bridge state; the horizontal volume force of the main cable can generate a gradient distributed vertical extrusion pressure on the saddle clamping device and the main saddle body; the geometric nonlinear effect of the self- anchored suspension bridge cable system in the construction process is significant, which can be reflected in the spatial tangent point position of the main cable with the main saddle changes a lot from free cable to finished cable.
基金Acknowledgements The research was sponsored by the Natural Science Foundation of China (50975012), and the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province (2008BS05007).
文摘The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.
基金National Natural Science Foundation of China under Grant Nos.51708088 and 51625802the Foundation for High Level Talent Innovation Support Program of Dalian under Grant No.2017RD03
文摘Cable-membrane structures have small rigidity and are highly sensitive to wind. Structural health monitoring is necessary to ensure the serviceability and safety of the structure. In this research, the design method of a structural health monitoring system is using the characteristics of a cable-membrane structure. Taking the Yueyang Sanhe Airport Terminal as an example, a finite element model is established to determine the critical structural components. Next, the engineering requirements and the framework of the monitoring system are studied based on the results of numerical analysis. The specific implementation of the structural health monitoring is then carried out, which includes sensor selection, installation and wiring. The proposed framework is successfully applied to the monitoring system for the Yueyang Airport terminal building, and the synchronous acquisition of fiber Bragg grating and acceleration sensor signals is implemented in an innovative way. The successful implementation and operation of structural health monitoring will help to guarantee the safety of the cablemembrane structure during its service life.
基金The National High Technology Research and Development Program of China(863Program)under contract Nos 2009AA093401 and 2010AA09Z302the National Natural Science Foundation of China(Key Program)under contract No.90814011+1 种基金Special Funds for Postdoctoral Innovative Projects of Shandong Province under contract No.201102008the Fundamental Research Funds for the Central Universities under contract No.11CX04037A
文摘The AHP-GDM model is used for the assessment of structural stability, with the Bohai Sea area as an exam- ple. In this model, the credit degree of each expert is calculated through the assessment matrix based on the similarity and diversity of vector. The comprehensive opinions of expert panel are quantitatively obtained by considering the effect ofcredit degree. According to the geological structural setting, the Bohai Sea is di- vided into twelve assessment zones of structural stability by non-uniform element method. The structural stability grade of each zone is obtained on the basis of the latest geophysical data, earthquake statistical data, and the information of fault activities, current stress field and crustal deformation. The results show that there are one relatively stable area, three relatively sub-stable areas, six relatively sub-unstable areas and two relatively unstable areas. The assessment results of non-uniform element method are very close with those of uniform grid method with size of 0.25 in longitude direction and 0.14 in latitude direction. However the workload of non-uniform element method is only 1 / 16 of the latter. Compared with traditional assessment methods of structural stability, a more objective and reliable assessment result can be obtained by combining non-uniform element method and AHP-GDM model.
文摘The structural damage identification through modal data often leads to solving a set of linear equations. Special numerical treatment is sometimes required for an accurate and stable solution owing to the ill conditioning of the equations. Based on the singular value decomposition (SVD) of the coefficient matrix, an error based truncation algorithm is proposed in this paper. By rejection of selected small singular values, the influence of noise can be reduced. A simply-supported beam is used as a simulation example to compare the results to other methods. Illustrative numerical examples demonstrate the good efficiency and stability of the algorithm in the nondestructive identification of structural damage through modal data.
文摘The sensitivity calculating formulas in structural dynamics was developed by utilizing the mathematical theorem and new definitions of sensitivities. So the singularity problem of sensitivity with repeated eigenvalues is solved completely. To improve the computational efficiency, the reduction system is obtained based on Lanczos vectors. After incorporating the mathematical theory with the Lanczos algorithm, the approximate sensitivity solution can be obtained. A numerical example is presented to illustrate the performance of the method.
基金Projects(51409167,51139001,51179066)supported by the National Natural Science Foundation of ChinaProjects(201401022,201501036)supported by the Ministry of Water Resources Public Welfare Industry Research Special Fund,ChinaProjects(GG201532,GG201546)supported by the Scientific and Technological Research for Water Conservancy,Henan Province,China
文摘The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.
文摘A three-dimensional nonlinear modeling strategy for simulating the seismic response of slender reinforced concrete structural walls with different cross-sectional shapes is presented in this paper.A combination of nonlinear multi-layer shell elements and displacement-based beam-column elements are used to model the unconfined and confined parts of the walls,respectively.A uniaxial material model for reinforcing steel bars that includes buckling and low-cyclic fatigue effects is used to model the longitudinal steel bars within the structural walls.The material model parameters related to the buckling length are defined based on an analytical expression for reinforcing steel bars embedded in reinforced concrete elements,which are developed based on beam-on-springs model,and validated with experimental tests of boundary elements of structural walls available in the literature.Six experimental case studies of reinforced concrete walls with rectangularshape,T-shape,and U-shape cross-section are used to validate the structural wall numerical modeling strategy.
基金supported by the National Natural Science Foundation of China(No.51579176)the Natural Science Foundation of Tianjin(No.16JCYBJC21200)the Research Fund of the State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(No.1501)
文摘Vertical axis wind turbines(VAWTs) are advantageous for the development of large-scale offshore wind power because the drive system is located at the bottom of the turbine. This study investigates the structural strength of a tri-floater floating foundation supporting a 2.6 MW Darrieus VAWT. Finite element models of the floating foundation were developed using space plate-beam elements. The environmental loads, such as the aerodynamic loads, static wind loads, and wave-current loads, were considered. The general strengths of the floating foundation were calculated for the normal operating case(a cut-out wind speed of 25 m s^(-1) and blade rotation of 12 r min^(-1) were used to analyze the most unfavorable loads) and an extreme case(wind speed of 40 m s^(-1) and parked blades), and the weak components of the structure were analyzed. The results show that the floating foundation meets the strength requirements and the structural stress is highest when the wave, wind, and current are in a collinear direction. The main and secondary supporting bars transmit the loads between the stand columns and the tower foundation, and their stresses are higher than those in the other components. In the actual design, these supporting bars should be strengthened. The aerodynamic loads are very important and should be considered in the structural strength analysis of the floating foundation and the floating wind turbine system.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.