期刊文献+
共找到2,595篇文章
< 1 2 130 >
每页显示 20 50 100
Hydrocarbon gas huff-n-puff optimization of multiple horizontal wells with complex fracture networks in the M unconventional reservoir
1
作者 Hao-Chuan Zhang Yong Tang +5 位作者 You-Wei He Yong Qin Jian-Hong Luo Yu Sun Ning Wang De-Qiang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1018-1031,共14页
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth... The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks. 展开更多
关键词 Unconventional oil reservoir Complex fracture network hydrocarbon gas huff-n-puff Parameter optimization Numerical simulation
下载PDF
Research advances on the mechanisms of reservoir formation and hydrocarbon accumulation and the oil and gas development methods of deep and ultra-deep marine carbonates
2
作者 MA Yongsheng CAI Xunyu +9 位作者 LI Maowen LI Huili ZHU Dongya QIU Nansheng PANG Xiongqi ZENG Daqian KANG Zhijiang MA Anlai SHI Kaibo ZHANG Juntao 《Petroleum Exploration and Development》 SCIE 2024年第4期795-812,共18页
Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d... Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved. 展开更多
关键词 deep and ultra-deep marine carbonate mechanisms of hydrocarbon accumulation reef-beach facies high-sulfur sour gas reservoirs ultra-deep fault-controlled fractured-cavity reservoir wellbore sulfur deposition fluid-solid-thermal numerical simulation
下载PDF
Turbidite Dynamics and Hydrocarbon Reservoir Formation in the Tano Basin: A Coastal West African Perspective
3
作者 Michael K. Appiah Sylvester K. Danuor +1 位作者 Striggner Bedu-Addo Alfred K. Bienibuor 《International Journal of Geosciences》 CAS 2024年第2期137-161,共25页
This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years... This study examines the turbidite dynamics and hydrocarbon reservoir formation in Ghana’s Tano Basin, which is located in coastal West Africa. Through an exploration of geological processes spanning millions of years, we uncover key factors shaping hydrocarbon accumulation, including source rock richness, temperature, pressure, and geological structures. The research offers valuable insights applicable to exploration, management, and sustainable resource exploitation in coastal West Africa. It facilitates the identification of exploration targets with higher hydrocarbon potential, enables the anticipation of reservoir potential within the Tano Basin, and assists in tailoring exploration and management strategies to specific geological conditions of the Tano Basin. Analysis of fluvial channels sheds light on their impact on landscape formation and hydrocarbon exploration. The investigation into turbidite systems unveils intricate interactions involving tectonics, sea-level fluctuations, and sedimentation patterns, influencing the development of reservoirs. An understanding of sediment transport and depositional settings is essential for efficient reservoir management. Geomorphological features, such as channels, submarine canyons, and distinct channel types, are essential in this situation. A detailed examination of turbidite channel structures, encompassing canyons, channel complexes, convex channels, and U-shaped channels, provides valuable insights and aids in identifying exploration targets like basal lag, channel levees, and lobes. These findings underscore the enduring significance of turbidite systems as conduits for sediment transport, contributing to enhanced reservoir management and efficient hydrocarbon production. The study also highlights how important it is to examine the configuration of sedimentary layers, stacking patterns, and angular laminated facies to identify turbidites, understand reservoir distribution, and improve well design. The dynamic nature of turbidite systems, influenced by basin characteristics such as shape and slope, is highlighted. The research provides valuable insights essential for successful hydrocarbon exploration, reservoir management, and sustainable resource exploitation in coastal West Africa. 展开更多
关键词 reservoir Characterization Tano Basin Seismic Data hydrocarbon Potential Channels TURBIDITES
下载PDF
Geologic Characteristics of Volcanic Hydrocarbon Reservoirs and Exploration Directions in China 被引量:12
4
作者 ZOU Caineng ZHU Rukai ZHAO Wenzhi JIA Chengzao ZHANG Guangya YUAN Xuanjun ZHAO Xia WEN Baihong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第1期194-205,共12页
Volcanic rocks are distributed widely in China, which are important exploration targets. By analyzing many discovered volcanic hydrocarbon reservoirs all over the world, the authors summarized the geologic characteris... Volcanic rocks are distributed widely in China, which are important exploration targets. By analyzing many discovered volcanic hydrocarbon reservoirs all over the world, the authors summarized the geologic characteristics of the formation of volcanic hydrocarbon reservoirs in China, and gave further exploration directions and advices. (1) There are mainly Carboniferous-Permian, Jurassic-Cretaceous, Paleogene-Neogene volcanic rocks in oil- and gas-bearing basins in China, which are mainly distributed in the Junggar Basin, Songliao Basin, Bohai Bay Basin, etc. There are mainly intermediate rocks and acidic rocks in east China, and intermediate rocks and basic rocks in west China. They primarily develop in intracontinentai rift settings and island arc environments. (2) Porefissure reservoirs are distributed widely in basins, which are volcanic rocks mainly in explosive and effusive facies. (3) Volcanic hydrocarbon reservoirs are chiefly near-source lithostratigraphic hydrocarbon reservoirs, and the oil and gas accumulation is predominantly controlled by lithotypes, faults and structural positions. (4) Deep-seated oil and gas reservoirs in the Songliao Basin and Carboniferous volcanic hydrocarbon reservoirs in the Junggar Basin are potential giant volcanic gas provinces, the volcanic hydrocarbon reservoirs in the Bohai Bay Basin and Santanghu Basin are favorable for oil and gas reserves increase, and volcanic rocks in the Turpan Basin, Sichuan Basin, Tarim Basin have exploration potentiality. (5) The technology series of oil and gas exploration in volcanic rocks have been preliminarily formed. 展开更多
关键词 volcanic rock geologic characteristics of volcanic hydrocarbon reservoirs lithostratigraphic hydrocarbon reservoirs exploration direction
下载PDF
A unified model for the formation and distribution of both conventional and unconventional hydrocarbon reservoirs 被引量:18
5
作者 Xiongqi Pang Chengzao Jia +8 位作者 Junqing Chen Maowen Li Wenyang Wang Qinhong Hu Yingchun Guo Zhangxin Chen Junwen Peng Keyu Liu Keliu Wu 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期695-711,共17页
The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balanc... The discovery and large-scale exploration of unconventional oil/gas resources since 1980s have been considered as the most important advancement in the history of petroleum geology;that has not only changed the balance of supply and demand in the global energy market,but also improved our understanding of the formation mechanisms and distribution characteristics of oil/gas reservoirs.However,what is the difference of conventional and unconventional resources and why they always related to each other in petroliferous basins is not clear.As the differences and correlations between unconventional and conventional resources are complex challenging issues and very critical for resources assessment and hydrocarbon exploration,this paper focused on studying the relationship of formations and distributions among different oil/gas reservoirs.Drilling results of 12,237 exploratory wells in 6 representative petroliferous basins of China and distribution characteristics for 52,926 oil/gas accumulations over the world were applied to clarify the formation conditions and genetic relations of different oil/gas reservoirs in a petroliferous basin,and then to establish a unified model to address the differences and correlations of conventional and unconventional reservoirs.In this model,conventional reservoirs formed in free hydrocarbon dynamic field with high porosity and permeability located above the boundary of hydrocarbon buoyancy-driven accumulation depth limit.Unconventional tight reservoirs formed in confined hydrocarbon dynamic field with low porosity and permeability located between hydrocarbon buoyancy-driven accumulation depth limit and hydrocarbon accumulation depth limit.Shale oil/gas reservoirs formed in the bound hydrocarbon dynamic field with low porosity and ultra-low permeability within the source rock layers.More than 75%of proved reserves around the world are discovered in the free hydrocarbon dynamic field,which is estimated to contain only 10%of originally generated hydrocarbons.Most of undiscovered resources distributed in the confined hydrocarbon dynamic field and the bound hydrocarbon dynamic field,which contains 90%of original generated hydrocarbons,implying a reasonable and promising area for future hydrocarbon explorations.The buried depths of hydrocarbon dynamic fields become shallow with the increase of heat flow,and the remaining oil/gas resources mainly exist in the deep area of“cold basin”with low geothermal gradient.Lithology changing in the hydrocarbon dynamic field causes local anomalies in the oil/gas dynamic mechanism,leading to the local formation of unconventional hydrocarbon reservoirs in the free hydrocarbon dynamic field or the occurrence of oil/gas enrichment sweet points with high porosity and permeability in the confined hydrocarbon dynamic field.The tectonic movements destroy the medium conditions and oil/gas components,which leads to the transformation of conventional oil/gas reservoirs formed in free hydrocarbon dynamic field to unconventional ones or unconventional ones formed in confined and bound hydrocarbon dynamic fields to conventional ones. 展开更多
关键词 Fossil fuels hydrocarbon resources Unified model of reservoirs formation hydrocarbon reservoirs hydrocarbon accumulation hydrocarbon dynamic field
下载PDF
K-Ar Dating of Authigenic Illites and Its Applications to the Study of Hydrocarbon Charging Histories of Typical Sandstone Reservoirs in Tarim Basin, China 被引量:6
6
作者 ZhangYouyu HorstZwingmann +2 位作者 AndrewTodd LiuKeyu LuoXiuquan 《Petroleum Science》 SCIE CAS CSCD 2005年第2期12-24,81,共14页
The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of res... The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of reservoirs by applying K-Ar dating of authigenic illites. The ages of authigenic illites from the Lower Silurian bituminous sandstones in the Central Uplift area range from 383.5 to 235.2 Ma, suggesting that the Silurian oil accumulations were formed from the late Caledonian till the late Hercynian. The ages of authigenic illites from the Upper Devonian Donghe Sandstone reservoirs range from 263.8 to 231.3 Ma, indicating that hydrocarbon accumulations within the Donghe sandstone were formed mainly in the late Hercynian. The authigenic illites ages from the Lower Jurassic Yangxia Group sandstones in the Yinan-2 gas reservoir (Yinan-2, Kuqa Depression) range from 28.1 to 23.9 Ma, suggesting that the initial hydrocarbon charging occurred in the Miocene. The ages of the authigenic illites from the Lower Cretaceous sandstones in the Akemomu gas field (Ake-1, Kashi Sag, Southwest Depression) range from 22.6 to 18.8 Ma, indicating a probable early oil accumulation or early migration of hydrocarbon within this area. The illites from the Paleogene sandstones in the Dina-2 gas reservoir (Dina-201, Kuqa Depression) have a detrital origin; they cannot be used to study the hydrocarbon charging histories. The ages of authigenic illites in the underlying Cretaceous sandstones in the same well (Dina-201) range from 25.5 to 15.5 Ma, indicating that hydrocarbon charging in this reservoir probably occurred within the Miocene. This study highlights the potential of applying K-Ar dating of authigenic illites to investigate the timing of hydrocarbon charging histories of the Tarim Basin reservoir sandstones. 展开更多
关键词 K-Ar dating authigenic illite hydrocarbon charge sandstone reservoirs Tarim Basin
下载PDF
Ordovician Basement Hydrocarbon Reservoirs in the Tarim Basin, China 被引量:4
7
作者 YANXiangbin LITiejun ZHANGTao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第3期676-683,共8页
Ordovician marine carbonate basement traps are widely developed in the paleo-highs and paleo-slopes in the Tarim Basin. Reservoirs are mainly altered pore-cavity-fissure reservoirs. Oil sources are marine carbonate ro... Ordovician marine carbonate basement traps are widely developed in the paleo-highs and paleo-slopes in the Tarim Basin. Reservoirs are mainly altered pore-cavity-fissure reservoirs. Oil sources are marine carbonate rocks of the Lower Paleozoic. Thus, the paleo-highs and paleo-slopes have good reservoiring conditions and they are the main areas to explore giant and large-scale oil reservoirs. The main factors for their reservoiring are: (1) Effective combination of fenestral pore-cavity-fracture reservoirs, resulting from multi-stage, multi-cyclic karstification (paleo-hypergene and deep buried) and fracturing, with effective overlying seals, especially mudstone and gypsum mudstone in the Carboniferous Bachu Formation, is essential to hydrocarbon reservoiring and high and stable production; (2) Long-term inherited large rises and multi-stage fracture systems confine the development range of karst reservoirs and control hydrocarbon migration, accumulation and reservoiring; (3) Long-term multi-source hydrocarbon supply, early reservoiring alteration and late charging adjustment are important reservoiring mechanisms and determine the resource structure and oil and gas properties. Favorable areas for exploration of Ordovician carbonate basement hydrocarbon reservoirs in the Tarim Basin are the Akekule rise, Katahe uplift, Hetianhe paleo-high and Yakela faulted rise. 展开更多
关键词 Tarim Basin ORDOVICIAN basement hydrocarbon reservoir
下载PDF
Alteration and Reformation of Hydrocarbon Reservoirs and Prediction of Remaining Potential Resources in Superimposed Basins 被引量:4
8
作者 PANG Hong PANG Xiongqi +3 位作者 YANG Haijun LIN Changsong MENG Qingyang WANG Huaijie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1078-1096,共19页
Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are c... Complex hydrocarbon reservoirs developed widely in the superimposed basins of China formed from multiple structural alterations, reformation and destruction of hydrocarbon reservoirs formed at early stages. They are characterized currently by trap adjustment, component variation, phase conversion, and scale reformation. This is significant for guiding current hydrocarbon exploration by revealing evolution mechanisms after hydrocarbon reservoir formation and for predicting remaining potential resources. Based on the analysis of a number of complex hydrocarbon reservoirs, there are four geologic features controlling the degree of destruction of hydrocarbon reservoirs formed at early stages: tectonic event intensity, frequency, time and caprock sealing for oil and gas during tectonic evolution. Research shows that the larger the tectonic event intensity, the more frequent the tectonic event, the later the last tectonic event, the weaker the caprock sealing for oil and gas, and the greater the volume of destroyed hydrocarbons in the early stages. Based on research on the main controlling factors of hydrocarbon reservoir destruction mechanisms, a geological model of tectonic superimposition and a mathematical model evaluating potential remaining complex hydrocarbon reservoirs have been established. The predication method and technical procedures were applied in the Tazhong area of Tarim Basin, where four stages of hydrocarbon accumulation and three stages of hydrocarbon alteration occurred. Geohistorical hydrocarbon accumulation reached 3.184 billion tons, of which 1.271 billion tons were destroyed. The total volume of remaining resources available for exploration is -1.9 billion tons. 展开更多
关键词 superimposed basin hydrocarbon reservoirs multiple structural alteration tectonic eventintensity potential resources Tarim Basin
下载PDF
Controlling effects of the Ordovician carbonate pore structure on hydrocarbon reservoirs in the Tarim Basin, China 被引量:2
9
作者 Wu Guanghui Yang Haijun +1 位作者 Li Haowu Sun Lixia 《Petroleum Science》 SCIE CAS CSCD 2013年第3期282-291,共10页
The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by ... The Ordovician carbonate reservoirs in the Tarim Basin with secondary dissolution pores and vugs have complicated pore structures. The weathering crust reservoirs mainly consist of large cavities or vugs connected by fractures, but most of the reef-shoal reservoirs have complex and small throats among matrix pores. The pore structure can be divided into four types: big pore and big throat, big pore but small throat, small pore and small throat, and fracture type. Most of the average throat radius falls between 0.03 and 0.07μm, close to that of unconventional reservoirs except in local areas with developed fractures. Fluid driving force analysis shows that the differentiation of fluid is mainly controlled by the throat radius in two kinds of mechanism separated by the critical throat radius about 0.1 μm. There is obvious fluid differentiation and oil/gas/water contact in fracture-cavity reservoirs with big throats. However, most of reservoirs under the critical throat radius have high capillary pressure, which resulted in incomplete differentiation of gas/oil/water, and complicated fluid distribution and fluid properties in the unconventional reservoirs. 展开更多
关键词 CARBONATE throat radius critical hydrocarbon column unconventional reservoir mechanism
下载PDF
Pre-Drilling Prediction Techniques on the High-Temperature High-Pressure Hydrocarbon Reservoirs Offshore Hainan Island,China 被引量:2
10
作者 ZHANG Hanyu LIU Huaishan +6 位作者 WU Shiguo SUN Jin YANG Chaoqun XIE Yangbing CHEN Chuanxu GAO Jinwei WANG Jiliang 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第1期72-82,共11页
Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve... Decreasing the risks and geohazards associated with drilling engineering in high-temperature high-pressure(HTHP) geologic settings begins with the implementation of pre-drilling prediction techniques(PPTs). To improve the accuracy of geopressure prediction in HTHP hydrocarbon reservoirs offshore Hainan Island, we made a comprehensive summary of current PPTs to identify existing problems and challenges by analyzing the global distribution of HTHP hydrocarbon reservoirs, the research status of PPTs, and the geologic setting and its HTHP formation mechanism. Our research results indicate that the HTHP formation mechanism in the study area is caused by multiple factors, including rapid loading, diapir intrusions, hydrocarbon generation, and the thermal expansion of pore fluids. Due to this multi-factor interaction, a cloud of HTHP hydrocarbon reservoirs has developed in the Ying-Qiong Basin, but only traditional PPTs have been implemented, based on the assumption of conditions that do not conform to the actual geologic environment, e.g., Bellotti's law and Eaton's law. In this paper, we focus on these issues, identify some challenges and solutions, and call for further PPT research to address the drawbacks of previous works and meet the challenges associated with the deepwater technology gap. In this way, we hope to contribute to the improved accuracy of geopressure prediction prior to drilling and provide support for future HTHP drilling offshore Hainan Island. 展开更多
关键词 pre-drilling prediction techniques formation PORE pressure high-temperature high-pressure hydrocarbon reservoirS HAINAN Island Ying-Qiong Basin
下载PDF
A method for evaluating paleo hydrocarbon pools and predicting secondary reservoirs:a case study of the Sangonghe Formation in the Mosuowan area,Junggar Basin 被引量:2
11
作者 Wei-Jiao Ma Yan-Zhao Wei Shi-Zhen Tao 《Petroleum Science》 SCIE CAS CSCD 2018年第2期252-269,共18页
Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Qua... Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs. 展开更多
关键词 Junggar Basin Paleo hydrocarbon pools hydrocarbon re-migration pathways Secondary reservoirs .Favorable zones
下载PDF
Reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust of Zhongguai high area in the western Junggar Basin, China 被引量:3
12
作者 LI Hu TANG Hong-ming +4 位作者 QIN Qi-rong FAN Cun-hui HAN Song YANG Cang ZHONG Cheng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2785-2801,共17页
Based on the drilling,cores,logs,seismic,laboratory analysis and so on,reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust in Zhongguai high area are studied.Volcanic rocks... Based on the drilling,cores,logs,seismic,laboratory analysis and so on,reservoir characteristics and hydrocarbon accumulation of Carboniferous volcanic weathered crust in Zhongguai high area are studied.Volcanic rocks were formed in an island arc environment.The lithology is mainly andesite and tuff;Reservoir spaces are mainly secondary pore,fracture and their combination forms,fractures have a better effect on reservoir seepage;There are four layer structures of volcanic weathered crust,weathered clay layer,strongly weathered zone,weakly weathered zone and unweathered zone and strongly weathered zone is the best,which is the main reservoir development zone;The development of reservoir is mainly affected by weathering-leaching,lithology and lithofacies,and fault(fracture);Effective reservoirs could reach to 480 m thickness(high quality reservoirs are within 240 m).Carboniferous volcanic reservoirs are distributed along three zones,which are near the fault zone,high structural part,favorable lithofacies development zone,and one plane,which is near the unconformity. 展开更多
关键词 reservoir characteristics volcanic weathered crust fracture hydrocarbon accumulation CARBONIFEROUS Zhongguai high area
下载PDF
Characteristics of Paleozoic clastic reservoirs and the relationship with hydrocarbon accumulation in the Tazhong area of the Tarim Basin, west China 被引量:1
13
作者 Wang Zhaoming Liu Luofu +3 位作者 Yang Haijun Wang Weili ZhangBaoshou Han Jianfa 《Petroleum Science》 SCIE CAS CSCD 2010年第2期192-200,共9页
In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic cla... In order to predict favorable exploration areas of the Paleozoic, Carboniferous and Silurian clastic reservoirs in the Tazhong area of the Tarim Basin, west China, we studied the basic characteristics of Paleozoic clastic reservoirs in the Tazhong area based on a lot of data. Several issues about the hydrocarbon accumulation related to the reservoirs were also discussed. The results were concluded that: the high-value areas of the porosity and permeability of clastic reservoirs were located in the southeast of the Tazhong area; the content of cement (carbonate cement in particular) was the main factor controlling the porosity and permeability of clastic reservoirs; the hydrocarbon distributions of Carboniferous and Silurian clastic reservoirs were closely related to the porosity and permeability; the favorable hydrocarbon accumulation areas of the two sets of strata were located in the southeast of this area, especially in the updip pinch-out area. 展开更多
关键词 Clastic reservoir CARBONIFEROUS SILURIAN PALEOZOIC hydrocarbon accumulation Tazhong area Tarim Basin
下载PDF
Hydrocarbon charging histories of the Ordovician reservoir in the Tahe oil field, Tarim Basin, China 被引量:3
14
作者 李纯泉 陈红汉 +2 位作者 李思田 张希明 陈汉林 《Journal of Zhejiang University Science》 EI CSCD 2004年第8期976-978,共3页
The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. ... The Ordovician reservoir of the Tahe oil field went through many tectonic reconstructions, and was characterized by multiple hydrocarbon chargings. The aim of this study was to unravel the complex charging histories. Systematic analysis of fluid inclusions was employed to complete the investigation. Fluorescence observation of oil inclusions under UV light, and microthermometry of both oil and aqueous inclusions in 105 core samples taken from the Ordovician reservoir indicated that the Ordovician reservoir underwent four oil chargings and a gas charging. The hydrocarbon chargings occurred at the late Hercynian, the Indo-Sinian and Yanshan, the early Himalaya, the middle Himalaya, and the late Himalaya,respectively. The critical hydrocarbon charging time was at the late Hercynian. 展开更多
关键词 Tahe oil field Ordovician reservoir Fluid inclusion hydrocarbon charging
下载PDF
Petrophysical Analysis of the Mpera Well in the Exploration Block 7, Offshore Tanzania: Implication on Hydrocarbon Reservoir Rock Potential 被引量:2
15
作者 Juma M. Mheluka Gabriel D. Mulibo 《Open Journal of Geology》 2018年第8期803-818,共16页
The present study provides evaluation and estimation of petrophysical parameters and assessment of lithology and their thicknesses in order to characterize present reservoir rocks at Mpera well located in Exploration ... The present study provides evaluation and estimation of petrophysical parameters and assessment of lithology and their thicknesses in order to characterize present reservoir rocks at Mpera well located in Exploration Block 7, deep offshore Tanzania. To achieve the objectives the wire-line logs, Techlog program was used for assessment, analysis, computation and interpretations of petrophysical parameters and results were integrated through interpretation of well logs. The results from wire-line logs reveal three (3) non hydrocarbon-bearing reservoir rocks i.e., Mpera splay (sandstone), Mpera deep sand 1 (sandstone and limestone) and Mpera deep sand 2 (sandstone and limestone) with gross thickness of 94.335 m, 28.905 m and 12.967 m respectively. The average permeability values of the reservoir rocks were 9.47 mD, 6.45 mD and 4.67 mD, while average porosity values were 14.57%, 17.4% and 16.75%, with average volume of shale 25.7%, 23.5% and 9.7% at Mpera splay, Mpera deep sand 1 and Mpera deep sand 2 respectively. These results signify poor permeability;good porosity and good quality reservoir in terms of volume of shale. Fluid type defined in the reservoirs was basically water. High water saturation (90.6% - 97.7%) in the reservoir zones of the Mpera well indicates that the proportion of void spaces occupied by water is high, thus, indicating less than 10% hydrocarbon saturation. The findings indicate that Mpera well reservoir rocks are of low quality with non-hydrocarbon bearing such that it is not potential for hydrocarbon production. 展开更多
关键词 reservoir hydrocarbon LITHOLOGY Mpera OFFSHORE
下载PDF
Sequence of densification and hydrocarbon charging of Xu2 reservoir in Anyue–Hechuan area,Sichuan Basin,China 被引量:2
16
作者 陈聪 徐国盛 +2 位作者 徐昉昊 袁海锋 陈飞 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第6期1439-1448,共10页
The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the histo... The sequence of the densification and hydrocarbon charging of the Xu2 reservoir in the Anyue–Hechuan area of Central Sichuan Basin is discussed.The diagenetic sequence is considered a time line to determine the historical relationship between the densification process and the hydrocarbon charging of the Xu2 reservoir in the study area:Early diagenetic stage B(the first stage of hydrocarbon charging,which was about 200–160 Ma ago,with a porosity of about 20%,consolidated and not tight)→middle diagenetic stage A(the second stage of hydrocarbon charging,which was about 140–120 Ma ago,with a porosity of 10%–20%and relatively tight)→middle diagenetic stage B(the third stage of hydrocarbon charging,which was about 20–5 Ma ago,with a porosity of 6%–10%and tight;However,fractures have developed).The study results prove that large-scale hydrocarbon charging and accumulation completed before the densification of the Xu2 reservoir,showing that the Upper Triassic Xujiahe Fm unconventional tight reservoir in the Sichuan Basin is prospective for exploration. 展开更多
关键词 Anyue-Hechuan area Xu2 member diagenetic sequence reservoir densification hydrocarbon charging INCLUSION
下载PDF
Origin, hydrocarbon accumulation and oil-gas enrichment of fault-karst carbonate reservoirs: A case study of Ordovician carbonate reservoirs in South Tahe area of Halahatang oilfield, Tarim Basin 被引量:4
17
作者 DING Zhiwen WANG Rujun +9 位作者 CHEN Fangfang YANG Jianping ZHU Zhongqian YANG Zhimin SUN Xiaohui XIAN Bo LI Erpeng SHI Tao ZUO Chao LI Yang 《Petroleum Exploration and Development》 2020年第2期306-317,共12页
Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir ... Based on comprehensive analysis of tectonic and fault evolution, core, well logging, seismic, drilling, and production data, the reservoir space characteristic, distribution, origin of fault-karst carbonate reservoir in Yueman block of South Tahe area, Halahatang oilfield, Tarim Basin, were studied systematically. And the regular pattern of hydrocarbon accumulation and enrichment was analyzed systematically based on development practice of the reservoirs. The results show that fault-karst carbonate reservoirs are distributed in the form of "body by body" discontinuously, heterogeneously and irregularly, which are controlled by the development of faults. Three formation models of fault-karst carbonate reservoirs, namely, the models controlled by the main deep-large fault, the secondary fault and the secondary internal fault, are built. The hydrocarbon accumulation and enrichment of fault-karst carbonate reservoirs is controlled by the spatiotemporal matching relation between hydrocarbon generation period and fault activity, and the size and segmentation of fault. The study results can effectively guide the well deployment and help the efficient development of fault-karst carbonate reservoirs of South Tahe area, Halahatang oilfield. 展开更多
关键词 Tarim Basin Halahatang oilfield South Tahe area ORDOVICIAN fault-karst carbonate reservoir hydrocarbon accumulation oil-gas enrichment
下载PDF
Heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in foreland thrust belts: A case study of deep Cretaceous Qingshuihe Formation clastic reservoirs in southern Junggar Basin, NW China 被引量:1
18
作者 GAO Chonglong WANG Jian +5 位作者 JIN Jun LIU Ming REN Ying LIU Ke WANG Ke DENG Yi 《Petroleum Exploration and Development》 SCIE 2023年第2期360-372,共13页
Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio... Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb. 展开更多
关键词 foreland thrust belt deep reservoir HETEROGENEITY differential hydrocarbon accumulation Cretaceous Qing-shuihe Formation GT1 Well Gaoquan structural belt southern Junggar Basin
下载PDF
Petroleum Source-Rock Evaluation and Hydrocarbon Potential in Montney Formation Unconventional Reservoir, Northeastern British Columbia, Canada 被引量:1
19
作者 Edwin I. Egbobawaye 《Natural Resources》 2017年第11期716-756,共41页
Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and the... Source-rock characteristics of Lower Triassic Montney Formation presented in this study shows the total organic carbon (TOC) richness, thermal maturity, hydrocarbon generation, geographical distribution of TOC and thermal maturity (Tmax) in Fort St. John study area (T86N, R23W and T74N, R13W) and its environs in northeastern British Columbia, Western Canada Sedimentary Basin (WCSB). TOC richness in Montney Formation within the study area is grouped into three categories: low TOC ( 3.5 wt%), and high TOC (>3.5 wt% %). Thermal maturity of the Montney Formation source-rock indicates that >90% of the analyzed samples are thermally mature, and mainly within gas generating window (wet gas, condensate gas, and dry gas), and comprises mixed Type II/III (oil/gas prone kerogen), and Type IV kerogen (gas prone). Analyses of Rock-Eval parameters (TOC, S2, Tmax, HI, OI and PI) obtained from 81 samples in 11 wells that penetrated the Montney Formation in the subsurface of northeastern British Columbia were used to map source rock quality across the study area. Based on total organic carbon (TOC) content mapping, geographical distribution of thermal maturity (Tmax) data mapping, including evaluation and interpretation of Rock-Eval parameters in the study area, the Montney Formation kerogen is indicative of a pervasively matured petroleum system in the study area. 展开更多
关键词 PETROLEUM Source-Rock Rock-Eval Oil and Gas Kerogen Vitrinite Reflectance hydrocarbon reservoir Montney FORMATION Geology TOC Tmax Pyrolysis hydrocarbon Generation British Columbia Western Canada Sedimentary Basin WCSB
下载PDF
A PRELIMINARY EVALUATION MODEL FOR RESERVOIR HYDROCARBON-GENERATING POTENTIAL ESTABLISHED BASED ON DISSOLVED HYDROCARBONS IN OILFIELD WATER 被引量:1
20
作者 赵红静 孙玮琳 +2 位作者 何保田 梅博文 张敏 《Chinese Journal Of Geochemistry》 EI CAS 2006年第1期85-89,共5页
A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of di... A large number of oilfield water samples were analyzed in this work. Research on the relationship between the concentrations and distribution of dissolved hydrocarbons suggested that the contents and composition of dissolved hydrocarbons varied with the hydrocarbon-generating potential of reservoirs. The concentrations of dissolved hydrocarbons were low in dry layers, water layers and gas-water layers, but high in gas reservoirs and oil reservoirs, especially in gas reservoirs with condensed oil. Series of carbon-number alkanes were usually absent in oilfield water from dry layers, water layers and gas-water layers but abundant in oilfield water from oil-water reservoirs, gas reservoirs and oil reservoirs, whose carbon numbers varied most widely in oil reservoirs and least in gas reservoirs. A preliminary evaluation model for reservoir hydrocarbon-generating potential was established based on the characteristics of dissolved hydrocarbons in oilfield water to assist hydrocarbon exploration. 展开更多
关键词 油田 碳氢化合物 地质勘探 塔里木盆地 地质构造
下载PDF
上一页 1 2 130 下一页 到第
使用帮助 返回顶部