The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i...Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.展开更多
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe...Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.展开更多
Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking ...Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.展开更多
Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges in...Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided.展开更多
Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable...Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture,pre-designable periodic skeleton,well-defined micro-/meso-pore,large specific surface area,and customizable electroactive functionality.Those benefits make COFs as promising candidates for advanced electrochemical energy storage.Especially,for now,structure engineering of COFs from multiscale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability,electrical conductivity,redox activity,and charge storage.In this review,we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs,started with introducing their basic chemistries and charge storage principles.The careful discussion on the significant achievements in structure engineering of COFs from linkages,redox sites,polygon skeleton,crystal nanostructures,and composite microstructures,and further their effects on the electrochemical behavior of COFs are presented.Finally,the timely cutting-edge perspectives and in-depth insights into COFbased electrodematerials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed.展开更多
With the rapid growth in renewable energy,researchers worldwide are trying to expand energy storage technologies.The development of beyond-lithium battery technologies has accelerated in recent years,amid concerns reg...With the rapid growth in renewable energy,researchers worldwide are trying to expand energy storage technologies.The development of beyond-lithium battery technologies has accelerated in recent years,amid concerns regarding the sustainability of battery materials.However,the absence of suitable high-performance materials has hampered the development of the next-generation battery systems.MXenes,a family of 2D transition metal carbides and/or nitrides,have drawn significant attention recently for electrochemical energy storage,owing to their unique physical and chemical properties.The extraordinary electronic conductivity,compositional diversity,expandable crystal structure,superior hydrophilicity,and rich surface chemistries make MXenes promising materials for electrode and other components in rechargeable batteries.This report especially focuses on the recent MXene applications as novel electrode materials and functional separator modifiers in rechargeable batteries beyond lithium.In particular,we highlight the recent advances of surface and structure engineering strategies for improving the electrochemical performance of the MXene-based materials,including surface termination modifications,heteroatom doping strategies,surface coating,interlayer space changes,nanostructure engineering,and heterostructures and secondary materials engineering.Finally,perspectives for building future sustainable rechargeable batteries with MXenes and MXene-based composite materials are presented based upon material design and a fundamental understanding of the reaction mechanisms.展开更多
Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-t...Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.展开更多
Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, e...Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc.展开更多
Tunneling heterostructures are emerging as a versatile architecture for photodetection due to their advanced optical sensitivity,tailorable detection band,and wellbalanced photoelectric performances.However,the existi...Tunneling heterostructures are emerging as a versatile architecture for photodetection due to their advanced optical sensitivity,tailorable detection band,and wellbalanced photoelectric performances.However,the existing tunneling heterostructures are mainly operated in the visible wavelengths and have been rarely investigated for the nearinfrared detection.Herein,we report the design and realization of a novel broken-gap tunneling heterostructure by combining WSe2 and Bi2Se3,which is able to realize the simultaneous visible and near-infrared detection because of the complementary bandgaps of WSe2 and Bi2Se3(1.46 and 0.3 e V respectively).Thanks to the realigned band structure,the heterostructure shows an ultralow dark current below picoampere and a high tunneling-dominated photocurrent.The photodetector based on our tunneling heterostructure exhibits a superior specific detectivity of 7.9×1012Jones for a visible incident of 532 nm and 2.2×1010Jones for a 1456 nm nearinfrared illumination.Our study demonstrates a new band structure engineering avenue for the construction of van der Waals tunneling heterostructures for high-performance wide band photodetection.展开更多
The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intrigui...The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.展开更多
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ...The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.展开更多
In this review,we surveyed the significance of local structure engineering on electrocatalysts and electrodes for the performance of oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).Both on...In this review,we surveyed the significance of local structure engineering on electrocatalysts and electrodes for the performance of oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).Both on precious metal catalysts(PMC)and non-precious metal catalysts(NPMC),the main methods to modulate local structure of active sites have been summarized.By change of atomic coordination,modulation of bonding distortion and synergy effect from hierarchical structure,local structure engineering has influence on the intrinsic activity and stability of electrocatalysts.Moreover,we emphasized the intimate correlation between lyophobicity of electrocatalysts and membrane electrodes by local structure engineering.Our review aimed to inspire the exploration of advanced electrocatalysts and mechanism study for PEMFCs based on local structure engineering.展开更多
Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices...Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.展开更多
Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dy...Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dynamic characteristics of structure and the type of geological strata on which it is founded.The safety of surrounding structures against blast vibrations is a cause of concern.However,use of a systematic approach to rock blasting helps to complete the excavation safely in time without endangering the safety of surrounding structures.Various steps are commonly adopted at construction sites to ensure safety of engineered structures against blast vibrations,e.g.adopting a suitable safe vibration level,developing site-specific attenuation relation,estimating safe charges for different distances,designing blasting pattern,and monitoring vibrations during actual blasting.The paper describes the details of studies conducted for ensuring safety of an 85 years old masonry dam and green concrete of varying ages during excavation of about 30,000 m;of hard rock in Maharashtra,India.The studies helped to complete the rock excavation safely in time and the safety of the dam was ensured by monitoring blast vibrations during actual rock excavation.展开更多
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and t...In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)展开更多
Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges re...Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.展开更多
Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,howev...Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards.展开更多
Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanopartic...Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.展开更多
Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fl...Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金This work was supported by the National Natural Sci- ence Foundation of China (No.11034006, No.21273208, and No.21473168), the Anhui Provincial Natural Sci- ence Foundation (No.1408085QB26), the hmdamental Research Funds for the Central Universities, the China Postdoctoral Science Foundation (No.2012M511409), and the Supercomputing Center of Chinese Academy of Sciences, Shanghai and USTC Supercomputer Cen- ters.
文摘Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance.
基金support from Australian Research Council (ARC, FT150100450, IH150100006 and CE170100039)support from the MCATM and the FLEET+1 种基金the support from Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)support from Guangzhou Science and Technology Program (Grant No. 201804010322)
文摘Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies.
基金support from the National Natural Science Foundation of China(Grant No.11725418)the National Key Research and Development Program of China(Grant No.2016YFA0301004)+3 种基金Science Challenge Project,China(Grant No.TZ2016004)Beijing Advanced Innovation Center for Future Chip(ICFC)Tsinghua University Initiative Scientific Research Programfunded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)–TRR 173–268565370(projects A02)。
文摘Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected.
基金financially supported by the National Natural Science Foundation of China(Nos.52075351 and 51604177)the National Key Research and Development Program of China(No.2019YFA0705701)+4 种基金the Major S&T Infrastructure Construction Project of Sichuan Province(No.2020-510000-73-01-441847)the International S&T Innovation Cooperation Program of Sichuan Province(No.2020YFH0039)Chengdu International S&T Cooperation Funded Project(Nos.2020-GH02-00006-HZ and 2022-GH02-00027-HZ)the"1000 Talents Plan"of Sichuan Provincethe Talent Introduction Program of Sichuan University(No.YJ201410)。
文摘Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided.
基金Hubei Provincial Natural Science Foundation of China,Grant/Award Number:2022CFB555Open Project of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2021003。
文摘Covalent organic frameworks(COFs),which are constructed by linking organic building blocks via dynamic covalent bonds,are newly emerged and burgeoning crystalline porous copolymers with features including programmable topological architecture,pre-designable periodic skeleton,well-defined micro-/meso-pore,large specific surface area,and customizable electroactive functionality.Those benefits make COFs as promising candidates for advanced electrochemical energy storage.Especially,for now,structure engineering of COFs from multiscale aspects has been conducted to enable optimal overall electrochemical performance in terms of structure durability,electrical conductivity,redox activity,and charge storage.In this review,we give a fundamental and insightful study on the correlations between multi-scale structure engineering and eventual electrochemical properties of COFs,started with introducing their basic chemistries and charge storage principles.The careful discussion on the significant achievements in structure engineering of COFs from linkages,redox sites,polygon skeleton,crystal nanostructures,and composite microstructures,and further their effects on the electrochemical behavior of COFs are presented.Finally,the timely cutting-edge perspectives and in-depth insights into COFbased electrodematerials to rationally screen their electrochemical behaviors for addressing future challenges and implementing electrochemical energy storage applications are proposed.
基金support by the Australian Research Council(ARC)through the ARC Discovery Projects(DP210101389 and DP230101579)the ARC Research Hub for Integrated Energy Storage Solutions(IH180100020).
文摘With the rapid growth in renewable energy,researchers worldwide are trying to expand energy storage technologies.The development of beyond-lithium battery technologies has accelerated in recent years,amid concerns regarding the sustainability of battery materials.However,the absence of suitable high-performance materials has hampered the development of the next-generation battery systems.MXenes,a family of 2D transition metal carbides and/or nitrides,have drawn significant attention recently for electrochemical energy storage,owing to their unique physical and chemical properties.The extraordinary electronic conductivity,compositional diversity,expandable crystal structure,superior hydrophilicity,and rich surface chemistries make MXenes promising materials for electrode and other components in rechargeable batteries.This report especially focuses on the recent MXene applications as novel electrode materials and functional separator modifiers in rechargeable batteries beyond lithium.In particular,we highlight the recent advances of surface and structure engineering strategies for improving the electrochemical performance of the MXene-based materials,including surface termination modifications,heteroatom doping strategies,surface coating,interlayer space changes,nanostructure engineering,and heterostructures and secondary materials engineering.Finally,perspectives for building future sustainable rechargeable batteries with MXenes and MXene-based composite materials are presented based upon material design and a fundamental understanding of the reaction mechanisms.
基金supported by the National Key R&D Program of China(Nos.2023YFA1507800,2023YFA1507801)the National Natural Science Foundation of China(Nos.22288102,22208008)the Fundamental Research Funds for the Central Universities,China(No.ZY2423).
文摘Layered double hydroxide(LDH)is regarded as an advanced platform material in catalysis and attracts vast attrition recently.As a kind of two-dimensional layered material,it exhibits great advantages including cation-tunability in layer,lattice limitation,topological transformation,ion exchange and intercalation characteristics.It also can be used as building blocks for composite catalytic materials.Over 100 years,a large number of works have been accomplished and researchers made great progress on investigating the LDH-based catalytic materials.In this review,we summarize representative achievements and significant progress in recent years,which mainly include constructing high entropy catalytic material,high dispersion/stability and interfacial supported catalytic material,composite catalytic materials and nano-reactor based on LDH.Furthermore,through collecting the excellent works,we conclude the future development potential of LDH and provide a perspective.
文摘Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc.
基金supported by the National Nature Science Foundation of China(21825103 and 51727809)Hubei Provincial Natural Science Foundation of China(2019CFA002)the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018)。
文摘Tunneling heterostructures are emerging as a versatile architecture for photodetection due to their advanced optical sensitivity,tailorable detection band,and wellbalanced photoelectric performances.However,the existing tunneling heterostructures are mainly operated in the visible wavelengths and have been rarely investigated for the nearinfrared detection.Herein,we report the design and realization of a novel broken-gap tunneling heterostructure by combining WSe2 and Bi2Se3,which is able to realize the simultaneous visible and near-infrared detection because of the complementary bandgaps of WSe2 and Bi2Se3(1.46 and 0.3 e V respectively).Thanks to the realigned band structure,the heterostructure shows an ultralow dark current below picoampere and a high tunneling-dominated photocurrent.The photodetector based on our tunneling heterostructure exhibits a superior specific detectivity of 7.9×1012Jones for a visible incident of 532 nm and 2.2×1010Jones for a 1456 nm nearinfrared illumination.Our study demonstrates a new band structure engineering avenue for the construction of van der Waals tunneling heterostructures for high-performance wide band photodetection.
基金supported by the National Natural Science Foundation of China(61805044,62004071 and 11674310)the Key Platforms and Research Projects of Department of Education of Guangdong Province(2018KTSCX050)+1 种基金Guangdong Provincial Key Laboratory of Information Photonics Technology(2020B121201011)"The Pearl River Talent Recruitment Program"(2019ZT08X639)。
文摘The widespread application of photodetectors has triggered an urgent need for high-sensitivity and polarization-dependent photodetection.In this field,the two-dimensional(2D)tungsten disulfide(WS_(2))exhibits intriguing optical and electronic properties,making it an attractive photosensitive material for optoelectronic applications.However,the lack of an effective built-in electric field and photoconductive gain mechanism in 2D WS_(2)impedes its application in high-performance photodetectors.Herein,we propose a hybrid heterostructure photodetector that contains 1D Te and 2D WS_(2).In this device,1D Te induces in-plane strain in 2D WS_(2),which regulates the electronic structures of local WS_(2)and gives rise to type-Ⅱ band alignment in the horizontal direction.Moreover,the vertical heterojunction built of 2D WS_(2)and 1D Te introduces a high photoconductive gain.Benefiting from these two effects,the transfer of photogenerated carriers is optimized,and the proposed photodetector exhibits high sensitivity(photoresponsivity of ~27.7 A W^(-1),detectivity of 9.5×10^(12)Jones,and short rise/decay time of 19.3/17.6 ms).In addition,anisotropic photodetection characteristics with a dichroic ratio up to 2.1 are achieved.This hybrid 1D/2D heterostructure overcomes the inherent limitations of each material and realizes novel properties,opening up a new avenue towards constructing multifunctional optoelectronic devices.
基金supported by the Taishan Scholar Program of Shandong Province,China (tsqn202211162)the National Natural Science Foundation of China (22102079)the Natural Science Foundation of Shandong Province of China (ZR2021YQ10,ZR2022QB163)。
文摘The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER.
基金This work was supported by the National Basic Research Program of China(2017YFA0206702)the National Natural Science Foundation of China(21925110,21890751,91745113)+2 种基金Fundamental Research Funds for the Central Universities(WK 2060190084)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB36000000)the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology.
文摘In this review,we surveyed the significance of local structure engineering on electrocatalysts and electrodes for the performance of oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs).Both on precious metal catalysts(PMC)and non-precious metal catalysts(NPMC),the main methods to modulate local structure of active sites have been summarized.By change of atomic coordination,modulation of bonding distortion and synergy effect from hierarchical structure,local structure engineering has influence on the intrinsic activity and stability of electrocatalysts.Moreover,we emphasized the intimate correlation between lyophobicity of electrocatalysts and membrane electrodes by local structure engineering.Our review aimed to inspire the exploration of advanced electrocatalysts and mechanism study for PEMFCs based on local structure engineering.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11904261 and 11904259).
文摘Materials with kagome lattices have attracted significant research attention due to their nontrivial features in energy bands.We theoretically investigate the evolution of electronic band structures of kagome lattices in response to uniaxial strain using both a tight-binding model and an antidot model based on a periodic muffin-tin potential.It is found that the Dirac points move with applied strain.Furthermore,the flat band of unstrained kagome lattices is found to develop into a highly anisotropic shape under a stretching strain along y direction,forming a partially flat band with a region dispersionless along ky direction while dispersive along kx direction.Our results shed light on the possibility of engineering the electronic band structures of kagome materials by mechanical strain.
文摘Blasting used for rock excavation is associated with ground vibrations having potential damage to surrounding structures.The extent of damage produced in a structure depends largely on ground motion characteristics,dynamic characteristics of structure and the type of geological strata on which it is founded.The safety of surrounding structures against blast vibrations is a cause of concern.However,use of a systematic approach to rock blasting helps to complete the excavation safely in time without endangering the safety of surrounding structures.Various steps are commonly adopted at construction sites to ensure safety of engineered structures against blast vibrations,e.g.adopting a suitable safe vibration level,developing site-specific attenuation relation,estimating safe charges for different distances,designing blasting pattern,and monitoring vibrations during actual blasting.The paper describes the details of studies conducted for ensuring safety of an 85 years old masonry dam and green concrete of varying ages during excavation of about 30,000 m;of hard rock in Maharashtra,India.The studies helped to complete the rock excavation safely in time and the safety of the dam was ensured by monitoring blast vibrations during actual rock excavation.
文摘In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034)
基金National Natural Science Foundation of China (Nos. 22078242 and U20A20153)Applied Basic Research Program of Yunnan Province (Nos. 202101BE070001-032 and 202101BH070002)。
文摘Fe-N-C catalysts are widely considered as promising non-precious-metal candidates for electrocatalytic oxygen reduction reaction(ORR),Yet despite their high catalytic activity through rational modulation,challenges remain in their low site density and unsatisfactory mass transfer structure.Herein,we present a structural engineering approach employing a soft-template coating strategy to fabricate a hollow and hierarchically porous N-doped carbon framework anchored with atomically dispersed Fe sites(FeNCh) as an efficient ORR catalyst.The combination of hierarchical porosity and high exterior surface area is proven crucial for exposing more active sites,which gives rise to a remarkable ORR performance with a half-wave potential of 0.902 V in 0.1 m KOH and 0.814 V in 0.1 m HClO_(4),significantly outperforming its counterpart with solid structure and dominance of micropores(FeNC-s).The mass transfer property is revealed by in-situ electrochemical impedance spectroscopy(EIS) measurement.The distribution of relaxation time(DRT) analysis is further introduced to deconvolve the kinetic and mass transport processes,which demonstrates an alleviated mass transport resistance for FeNC-h,validating the effectiveness of structural engineering.This work not only provides an effective structural engineering approach but also contributes to the comprehensive mass transfer evaluation on advanced electrocatalyst for energy conversion applications.
基金funded by the Ghent University Special Research Fund under grant 01N01219“Multi-objective societal optimization of structural fire safety investments for uncommon projects using advanced regression techniques”.
文摘Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards.
基金supported by the National Natural Science Foundation of China(Grant Nos.51502253,U1405226,21503175,51773171,and 21705135)Natural Science Foundation of Guangdong Province(Grant No.2016A030310369)+5 种基金Natural Science Foundation of Fujian Province(Grant No.2017J01104)the Fundamental Research Funds for the Central Universities of China(Grant Nos.20720160127 and 20720180013)Doctoral Fund of the Ministry of Education(Grant No.20130121110018)NUS Ac RF Tier 1(Grant No.R-144-000-367-112)the “111” Project(Grant No.B16029)the 1000 Talents Program funding from the Xiamen University。
文摘Flexible biosensors with high accuracy and reliable operation in detecting pH and uric acid levels in body fluids are fabricated using well-engineered metaldoped porous carbon as electrode material.The gold nanoparticles@N-doped carbon in situ are prepared using wool keratin as both a novel carbon precursor and a stabilizer.The conducting electrode material is fabricated at 500℃ under customized parameters,which mimics A-B type(two different repeating units) polymeric material and displays excellent deprotonation performance(pH sensitivity).The obtained pH sensor exhibits high pH sensitivity of 57 mV/pH unit and insignificant relative standard deviation of 0.088%.Conversely,the composite carbon material with sp^2 structure prepared at 700℃ is doped with nitrogen and gold nanoparticles,which exhibits good conductivity and electrocatalytic activity for uric acid oxidation.The uric acid sensor has linear response over a range of 1-150 μM and a limit of detection 0.1 μM.These results will provide new avenues where biological material will be the best start,which can be useful to target contradictory applications through molecular engineering at mesoscale.
基金Project(Qian Jiao He KY Zi [2021]257) supported provided by the Natural Science Research Project of Education Department of Guizhou Province,ChinaProject(GZSQCC2019003) supported by the High-level Innovative Talent Cultivation Project of Guizhou Province,ChinaProjects(GZLGXM-01,GZLGXM-08) supported by the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology,China。
文摘Despite being a promising photoanode material for water splitting,WO_(3) has low conductivity,high onset potential,and sluggish water oxidation kinetics.In this study,we designed Ti-doped WO_(3) nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method,and the effects of doping on the photoelectrochemical performance were investigated.The optimal Ti-doped WO_(3) electrode achieved a photocurrent density of 0.53 mA/cm^(2) at 0.6 V(vs Ag/AgCl),110%higher than that of pure WO_(3) nanoplate arrays.Moreover,a significant cathodic shift in the onset potential was observed after doping.X-ray photoelectron spectroscopy valence band and ultraviolet–visible spectra revealed that the band positions of Ti-doped WO_(3) photoanodes moved upward,yielding a lower onset potential.Furthermore,electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO_(3) photoanodes improved after doping,because of the rapid separation of photo-generated charge carriers.Thus,we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.