Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are bas...Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.展开更多
With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important...With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.展开更多
The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of fo...The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of forming of focal area. However,spatial clustering of seismic events rises at the latest stage.展开更多
The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heatin...The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.展开更多
We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of...We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.展开更多
基金supported by the ESCAP/WMO Typhoon Committee Research Fellowship Scheme 2020 hosted by the Hong Kong Observatorythe Shanghai Natural Science Foundation(21ZR1477300)+2 种基金FengYun Application Pioneering Project(FY-APP-2021.0106)WMO Typhoon Landfall Forecast Demonstration Project(TLFDP)the Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service。
文摘Forecasting wind structure of tropical cyclone(TC)is vital in assessment of impact due to high winds using Numerical Weather Prediction(NWP)model.The usual verification technique on TC wind structure forecasts are based on grid-to-grid comparisons between forecast field and the actual field.However,precision of traditional verification measures is easily affected by small scale errors and thus cannot well discriminate the accuracy or effectiveness of NWP model forecast.In this study,the Method for Object-Based Diagnostic Evaluation(MODE),which has been widely adopted in verifying precipitation fields,is utilized in TC’s wind field verification for the first time.The TC wind field forecast of deterministic NWP model and Ensemble Prediction System(EPS)of the European Centre for Medium-Range Weather Forecasts(ECMWF)over the western North Pacific and the South China Sea in 2020 were evaluated.A MODE score of 0.5 is used as a threshold value to represent a skillful(or good)forecast.It is found that the R34(radius of 34 knots)wind field structure forecasts within 72 h are good regardless of DET or EPS.The performance of R50 and R64 is slightly worse but the R50 forecasts within 48 h remain good,with MODE exceeded 0.5.The R64forecast within 48 h are worth for reference as well with MODE of around 0.5.This study states that the TC wind field structure forecast by ECMWF is skillful for TCs over the western North Pacific and the South China Sea.
基金the National Social Science Funds of China (13&ZD159)the National Natural Science Foundation of China (71303258, 71373285)+1 种基金MOE (Ministry of Education in China) Project of Humanities and Social Sciences (13YJC630148)Science Foundation of China University of Petroleum, Beijing (ZX20150130) for sponsoring this joint research
文摘With the vigorous promotion of energy conservation and implementation of clean energy strategies,China's natural gas industry has entered a rapid development phase,and natural gas is playing an increasingly important role in China's energy structure.This paper uses a Generalized Weng model to forecast Chinese regional natural gas production,where accuracy and reasonableness compared with other predictions are enhanced by taking remaining estimated recoverable resources as a criterion.The forecast shows that China's natural gas production will maintain a rapid growth with peak gas of 323 billion cubic meters a year coming in 2036;in 2020,natural gas production will surpass that of oil to become a more important source of energy.Natural gas will play an important role in optimizing China's energy consumption structure and will be a strategic replacement of oil.This will require that exploration and development of conventional natural gas is highly valued and its industrial development to be reasonably planned.As well,full use should be made of domestic and international markets.Initiative should also be taken in the exploration and development of unconventional and deepwater gas,which shall form a complement to the development of China's conventional natural gas industry.
文摘The change of the structure of seismic event sequences in focal area in preparation period of strong earthquakes has been studied. Findings show that weak earthquake clustering in time increases in earlier stage of forming of focal area. However,spatial clustering of seismic events rises at the latest stage.
基金The National Key Basic Research Program of China under contract No.2014CB953904the Natural Science Foundation of Guangdong Province under contract No.2015A030311026the National Natural Science Foundation of China under contract Nos 41275145 and 41275060
文摘The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.
基金supported by the Natural Science Foundation of Nanjing Joint Center of Atmospheric Research(Grant Nos.NJCAR2016MS02 and NJCAR2016ZD04)the National Natural Science Foundation of China(Grant Nos.41205073 and41675007)the National Key Research and Development Program of China(Grant No.2017YFC1501800)
文摘We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate.