期刊文献+
共找到3,805篇文章
< 1 2 191 >
每页显示 20 50 100
Discussion on Construction Technology and Welding Deformation of High-Rise Steel Frame Structure
1
作者 Sijin He Xinzhong Leng 《Journal of World Architecture》 2023年第5期23-28,共6页
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu... Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry. 展开更多
关键词 high-rise steel frame structure Construction technology Welding deformation structural stability
下载PDF
AN EFFICIENT ASSESSMENT METHOD FOR INTELLIGENT DESIGN RESULTS OF SHEAR WALL STRUCTURE BASED ON MECHANICAL PERFORMANCE,MATERIAL CONSUMPTION,AND EMPIRICAL RULES
2
作者 覃思中 廖文杰 +1 位作者 林元庆 陆新征 《工程力学》 EI CSCD 北大核心 2023年第12期148-159,共12页
Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This... Efficient methods for incorporating engineering experience into the intelligent generation and optimization of shear wall structures are lacking,hindering intelligent design performance assessment and enhancement.This study introduces an assessment method used in the intelligent design and optimization of shear wall structures that effectively combines mechanical analysis and formulaic encoding of empirical rules.First,the critical information about the structure was extracted through data structuring.Second,an empirical rule assessment method was developed based on the engineer's experience and design standards to complete a preliminary assessment and screening of the structure.Subsequently,an assessment method based on mechanical performance and material consumption was used to compare different structural schemes comprehensively.Finally,the assessment effectiveness was demonstrated using a typical case.Compared to traditional assessment methods,the proposed method is more comprehensive and significantly more efficient,promoting the intelligent transformation of structural design. 展开更多
关键词 shear wall structure structural assessment data structuring intelligent design structural optimization
下载PDF
Analysis on Construction Quality Control Technology of Reinforced Concrete Shear Wall Structure
3
作者 Ting Zhou 《Frontiers Research of Architecture and Engineering》 2018年第4期117-121,共5页
In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wa... In the process of continuous development of construction enterprises, new requirements have been put forward for construction projects. By strengthening the construction quality control of reinforced concrete shear wall structure, the construction level of reinforced concrete can be continuously improved, the construction quality can be guaranteed, and the construction project can be successfully completed, which is worthy of extensive application and promotion in construction enterprises, thus providing a broader development space for construction enterprises. 展开更多
关键词 REINFORCED CONCRETE shear wall structure Construction QUALITY Control technology
下载PDF
Research on Seismic Design of High-Rise Buildings Based on Framed-Shear Structural System
4
作者 Wei Wang 《Frontiers Research of Architecture and Engineering》 2020年第3期87-90,共4页
Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is... Under the rapidly advancing economic trends,people’s requirements for the functionality and architectural artistry of high-rise structures are constantly increasing,and in order to meet such modern requirements,it is necessary to diversify the functions of high-rise buildings and complicate the building form.At present,the main structural systems of high-rise buildings are:frame structure,shear wall structure,frame shear structure,and tube structure.Different structural systems determine the size of the load-bearing capacity,lateral stiffness,and seismic performance,as well as the amount of material used and the cost.This project is mainly concerned with the seismic design of frame shear structural systems,which are widely used today. 展开更多
关键词 frame shear wall structure Displacement-based seismic design shear deformation
下载PDF
Effect of Molecular Weight and Molecular Distribution on Skin Structure and Shear Strength Distribution near the Surface of Thin-Wall Injection Molded Polypropylene
5
作者 Keisuke Maeda Koji Yamada +2 位作者 Kazushi Yamada Masaya Kotaki Hiroyuki Nishimura 《Open Journal of Organic Polymer Materials》 CAS 2016年第1期1-10,共10页
In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated.... In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer. 展开更多
关键词 POLYPROPYLENE Thin-wall Injection Molding Molecular Weight and Molecular Weight Distribution Skin-Core structure shear Strength Distribution
下载PDF
Study of the seismic response of a recycled aggregate concrete frame structure 被引量:2
6
作者 Wang Changqing Xiao Jianzhuang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期669-680,共12页
Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force ... Based on six-degree-of-freedom three-dimensional shaking table tests, the seismic response of a recycled aggregate concrete (RAC) frame was obtained. The analysis results indicate that the maximum story shear force and overturning moment reduce proportionally along the height of the model under the same earthquake wave. The story shear force, base shear coefficient and overturning moment of the structure increase progressively as the acceleration amplitude increases. The base shear coefficient is primarily controlled by the peak ground acceleration (PGA). The relationships between the PGA and the shear coefficient as well as between the PGA and the dynamic amplification factor are obtained by mathematical fitting. The dynamic amplification factor decreases rapidly at the elastic-plastic stage, but decreases slowly with the development of the elastic-plasticity stage. The results show that the RAC frame structure has reasonable deformability when compared with natural aggregate concrete frame structures. The maximum inter-story drift ratios of the RAC frame model under frequent and rare intensity 8 test phases are 1/266 and 1/29, respectively, which are larger than the allowable value of 1/500 and 1/50 according to Chinese seismic design requirements. Nevertheless, the RAC frame structure does not collapse under base excitations with PGAs from 0.066 g up to 1.170 g. 展开更多
关键词 recycled aggregate concrete (RAC) frame structure seismic response shear coefficient dynamicamplification factor
下载PDF
Transformation Matrix for Combined Loads Applied to Thin-Walled Structures
7
作者 Abdelraouf M. Sami Alsheikh David William Alan Rees 《World Journal of Mechanics》 2022年第6期65-78,共14页
This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with... This paper transforms combined loads, applied at an arbitrary point of a thin-walled open section beam, to the shear centre of the cross-section of the beam. Therein, a generalized transformation matrix for loads with respect to the shear centre is derived, this accounting for the bimoments that develop due to the way the combined loads are applied. This and the authors’ earlier paper (World Journal of Mechanics 2021, 11, 205-236) provide a full solution to the theory of thin-walled, open-section structures bearing combined loading. The earlier work identified arbitrary loading with the section’s area properties that are necessary to axial and shear stress calculations within the structure’s thin walls. In the previous paper attention is paid to the relevant axes of loading and to the transformations of loading required between axes for stress calculations arising from tension/compression, bending, torsion and shear. The derivation of the general transformation matrix applies to all types of loadings including, axial tensile and compression forces, transverse shear, longitudinal bending. One application, representing all these load cases, is given of a simple channel cantilever with an eccentrically located end load. 展开更多
关键词 Thin-walled structure Open Sections Transformation Matrix Load Transformation Combined Load Transformation shear Centre WARPING BIMOMENT Sectorial Area Properties
下载PDF
Lateral Performance for Wood-Frame Shear Walls–A Critical Review
8
作者 Wei Xu Ottavia Corbi +3 位作者 Seithati Mapesela Yue Chen Milan Gaff Haitao Li 《Journal of Renewable Materials》 SCIE EI 2023年第5期2143-2169,共27页
Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more devel... Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls. 展开更多
关键词 Light wood structure lateral performance shear wall basic structure influence factor
下载PDF
Two-Point Statistics of Coherent Structure in Turbulent Flow 被引量:1
9
作者 Jun Chen 《Journal of Flow Control, Measurement & Visualization》 2019年第4期153-173,共21页
This review summarizes the coherent structures (CS) based on two-point correlations and their applications, with a focus on the interpretation of statistic CS and their characteristics. We review studies on this topic... This review summarizes the coherent structures (CS) based on two-point correlations and their applications, with a focus on the interpretation of statistic CS and their characteristics. We review studies on this topic, which have attracted attention in recent years, highlighting improvements, expansions, and promising future directions for two-point statistics of CS in turbulent flow. The CS is one of typical structures of turbulent flow, transporting energy from large-scale to small-scale structures. To investigate the CS in turbulent flow, a large amount of two-point correlation techniques for CS identification and visualization have been, and are currently being, intensively studied by researchers. Two-point correlations with examples and comparisons between different methods are briefly reviewed at first. Some of the uses of correlations in both Eulerian and Lagrangian frames of reference to obtain their properties at consecutive spatial locations and time events are surveyed. Two-point correlations, involving space-time correlations, two-point spatial correlations, and cross correlations, as essential to theories and models of turbulence and for the analyses of experimental and numerical turbulence data are then discussed. The velocity-vorticity correlation structure (VVCS) as one of the statistical CS based on two-point correlations is reiterated in detail. Finally, we summarize the current understanding of two-point correlations of turbulence and conclude with future issues for this field. 展开更多
关键词 TWO-POINT Correlation Coherent structure Boundary Layer wall-Bounded FLOW TURBULENT shear FLOW
下载PDF
A permeability prediction method based on pore structure and lithofacies
10
作者 GAN Lideng WANG Yaojun +4 位作者 LUO Xianzhe ZHANG Ming LI Xianbin DAI Xiaofeng YANG Hao 《Petroleum Exploration and Development》 2019年第5期935-942,共8页
Permeability prediction using linear regression of porosity always has poor performance when the reservoir with complex pore structure and large variation of lithofacies.A new method is proposed to predict permeabilit... Permeability prediction using linear regression of porosity always has poor performance when the reservoir with complex pore structure and large variation of lithofacies.A new method is proposed to predict permeability by comprehensively considering pore structure,porosity and lithofacies.In this method,firstly,the lithofacies classification is carried out using the elastic parameters,porosity and shear frame flexibility factor.Then,for each lithofacies,the elastic parameters,porosity and shear frame flexibility factor are used to obtain permeability from regression.The permeability prediction test by logging data of the study area shows that the shear frame flexibility factor that characterizes the pore structure is more sensitive to permeability than the conventional elastic parameters,so it can predict permeability more accurately.In addition,the permeability prediction is depending on the precision of lithofacies classification,reliable lithofacies classification is the precondition of permeability prediction.The field data application verifies that the proposed permeability prediction method based on pore structure parameters and lithofacies is accurate and effective.This approach provides an effective tool for permeability prediction. 展开更多
关键词 SEISMIC RESERVOIR prediction PORE structure PERMEABILITY lithofacies shear frame FLEXIBILITY factor BOOSTING learning
下载PDF
Structural Analysis of a RC Shear Wall by Use of a Truss Model
11
作者 Panagis G. Papadopoulos Periklis E. Lamprou 《Open Journal of Civil Engineering》 CAS 2022年第3期320-352,共33页
Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An itera... Purpose of present work is to develop a reliable and simple method for structural analysis of RC Shear Walls. The shear wall is simulated by a truss model as the bar of a truss is the simplest finite element. An iterative method is used. Initially, there are only concrete bars. Repeated structural analyses are performed. After each structural analysis, every concrete bar exceeding tensile strength is replaced by a steel bar. For every concrete bar exceeding compressive strength, first its section area is increased. If this is not enough, a steel bar is placed at the side of it. For every steel bar exceeding tensile or compressive strength, its section area is increased. After the end of every structural analysis, if all concrete and steel bars fall within tensile and compressive strengths, the output data are written and the analysis is terminated. Otherwise, the structural analysis is repeated. As all the necessary conditions (static, elastic, linearized geometric) are satisfied and the stresses of ALL concrete and steel bars fall within the tensile and compressive strengths, the results are acceptable. Usually, the proposed method exhibits a fast convergence in 4 - 5 repeats of structural analysis of the RC Shear Wall. 展开更多
关键词 Reinforced Concrete shear wall structural Analysis Truss Model Iterative Method Computer Program Boundary Columns and Beam Grid of Horizontal and Diagonal Reinforcing Steel Bars
下载PDF
Seismic resilient shear wall structures:A state-of-the-art review 被引量:1
12
作者 XU Gang GUO Tong LI AiQun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第6期1640-1661,共22页
The ductile design principle has been widely adopted in seismic design of structures,so the main structural components are designed to have the dual functions of bearing and energy dissipation under the earthquake.In ... The ductile design principle has been widely adopted in seismic design of structures,so the main structural components are designed to have the dual functions of bearing and energy dissipation under the earthquake.In recent years,the intensity of major earthquakes occurred in China,Chile,New Zealand,and Japan had reached or exceeded the design level of the maximum credible earthquake.In most cases,the designed structures did not collapse and the casualties were small.However,many structures were seriously damaged and must be overhauled or rebuilt,resulting in huge economic losses.Therefore,researchers have paid more attention to the seismic resilient structures.The shear wall can provide an efficient lateral force resisting capacity and has a wide range of applications in building structures.This review firstly summarized the research advances of seismic resilient shear wall structures,mainly from three aspects:high-performance materials,replaceable components,and hybrid structural systems;then,the development of seismic performance analysis,design methods,and engineering applications of seismic resilient shear wall structures were presented;finally,the key issues that need to be explored in the future research were discussed,which was helpful for the wide application of seismic resilient shear wall structures. 展开更多
关键词 seismic resilience shear wall self-centering structure seismic design engineering application
原文传递
Effect of coronary artery dynamics on the wall shear stress vector field topological skeleton in fluid–structure interaction analyses 被引量:1
13
作者 Harry J.Carpenter Mergen H.Ghayesh +1 位作者 Anthony C.Zander Peter J.Psaltis 《International Journal of Mechanical System Dynamics》 2023年第1期48-57,共10页
In this paper,we investigate the impact of coronary artery dynamics on the wall shear stress(WSS)vector field topology by comparing fluid–structure interaction(FSI)and computational fluid dynamics(CFD)techniques.As o... In this paper,we investigate the impact of coronary artery dynamics on the wall shear stress(WSS)vector field topology by comparing fluid–structure interaction(FSI)and computational fluid dynamics(CFD)techniques.As one of the most common causes of death globally,coronary artery disease(CAD)is a significant economic burden;however,novel approaches are still needed to improve our ability to predict its progression.FSI can include the unique dynamical factors present in the coronary vasculature.To investigate the impact of these dynamical factors,we study an idealized artery model with sequential stenosis.The transient simulations made use of the hyperelastic artery and lipid constitutive equations,non‐Newtonian blood viscosity,and the characteristic out‐of‐phase pressure and velocity distribution of the left anterior descending coronary artery.We compare changes to established metrics of time‐averaged WSS(TAWSS)and the oscillatory shear index(OSI)to changes in the emerging WSS divergence,calculated here in a modified version to handle the deforming mesh of FSI simulations.Results suggest that the motion of the artery can impact downstream patterns in both divergence and OSI.WSS magnitude is also decreased by up to 57%due to motion in some regions.WSS divergence patterns varied most significantly between simulations over the systolic period,the time of the largest displacements.This investigation highlights that coronary dynamics could impact markers of potential CAD progression and warrants further detailed investigations in more diverse geometries and patient cases. 展开更多
关键词 computational fluid dynamics DIVERGENCE fluid–structure interaction topology wall shear stress
原文传递
In-Plane Shear Performance of Wood-Framed Drywall Sheathing Wall Systems under Cyclic Racking Loading
14
作者 Ali M. Memari Ryan L. Solnosky 《Open Journal of Civil Engineering》 2014年第1期54-70,共17页
A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall)... A pilot study was conducted at Penn State University to determine whether the type of drywall joint compound would influence the shear strength of wood-frame stud walls sheathed with Gypsum Wall Board (GWB or drywall). In this study, five 2438 mm by 2438 mm specimens were tested under in-plane cyclic racking loading following the CUREE loading protocol for light-frame wall systems. Three specimens were finished using non-cement based joint compound while the other two used cement based joint compound. Based on the experimental testing of the specimens, the results show that the use of cement based joint compound on drywall joints produces higher shear capacity for the wall system as compared to similar specimens finished with conventional non-cement based joint compound. The result of the study is particularly important for high seismic regions where interior stud walls in residential construction effectively take part in seismic resistance even though wood shear walls are normally used on exterior walls. 展开更多
关键词 frameS WOOD structures STUDS shear walls GYPSUM LATERAL Loads RESIDENTIAL
下载PDF
EFFECTS OF WALL ROUGHNESS ON COHERENT STRUCTURE IN TURBULENT SHEAR FLOWS 被引量:1
15
作者 LIANG ZAICHAO LIU SHIHE, Research Institute of Water Conservancy and Hydraulic Power, Wuhan University of Hydraulic and Electric Engineering, Wuhan, Hubei, P.R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1989年第1期15-21,共7页
There are many examples that fluid flows on rough wall, such as channel flow in nature, pipe flow, etc. In order to know the flow structure of real fluids, it is important to study the effects of wall roughness on coh... There are many examples that fluid flows on rough wall, such as channel flow in nature, pipe flow, etc. In order to know the flow structure of real fluids, it is important to study the effects of wall roughness on coherent structure in turbulent shear flows. The experiments were carried out in a square glass channel, which is 600cm long, with the cross section of 30×25cm^2. The flow velocity was varied from 2 to 40 cm/s. Uniform sands whose diameters were 0.0012cm, 0.2gcm, 0.385cm, 0.594cm and 0.896cm respectively were glued to the floor of the channel. The rough Reynolds number Re_Δ= U_*Δ/ν=0.04~73, where U_*is the shear velocity, Δ is the diame- ter of uniform sand, v is the kinematic viscosity coefficient. Hydrogen bubble technique for flow visualization and HWL-II hot-film anemometer for velocity mea- surement were used in the experiments. 展开更多
关键词 EFFECTS OF wall ROUGHNESS ON COHERENT structure IN TURBULENT shear FLOWS FLOW
原文传递
DYNAMIC RESPONSE AND ENERGY DISSIPATION ANALYSIS OF THE WALL WITH HORIZONTAL SHORT KEYWAYS AND LOWRISE SHEARWALL
16
作者 戴航 丁大钧 《Journal of Southeast University(English Edition)》 EI CAS 1993年第1期33-39,共7页
A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is stu... A new type of ductile lowrise shearwall with many short horizontalkeyways is proposed in this paper in order to improve the earthquake resistant behav-ior of ordinary lowrise shearwall.The behavior of this wall is studied through low-frequency cyclic loading test.Based on the test results,the paper puts forward thedifferent restoring force models for different lowrise shearwalls,and a program fortheir nonlinear dynamic analysis is worked out.Thr(?)h directly inputting earth-quake waves,the paper analyses the dynamic response and energy dissipation of 3types of lowrise shearwalls.The calculation results dem(?)strate that the newly de-vised ductile shearwall has good earthquake resistant behavior. 展开更多
关键词 DUCTILE shear wall dynamic structural ANALYSIS energy DISSIPATION
下载PDF
Study on the effect of the infill walls on the seismic performance of a reinforced concrete frame
17
作者 Zhang Cuiqiang Zhou Ying +1 位作者 Zhou Deyuan Lu Xilin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第4期507-517,共11页
Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Inf... Motivated by the seismic damage observed to reinforced concrete (RC) frame structures during the Wenchuan earthquake, the effect of infill walls on the seismic performance of a RC frame is studied in this paper. Infill walls, especially those made of masonry, offer some amount of stiffness and strength. Therefore, the effect of infill walls should be considered during the design of RC frames. In this study, an analysis of the recorded ground motion in the Wenehuan earthquake is performed. Then, a numerical model is developed to simulate the infill walls. Finally, nonlinear dynamic analysis is carried out on a RC frame with and without infill walls, respectively, by using CANNY software. Through a comparative analysis, the following conclusions can be drawn. The failure mode of the frame with infill walls is in accordance with the seismic damage failure pattern, which is strong beam and weak column mode. This indicates that the infill walls change the failure pattern of the frame, and it is necessary to consider them in the seismic design of the RC frame. The numerical model presented in this paper can effectively simulate the effect of infill walls on the RC frame. 展开更多
关键词 infill walls RC frame structure strong column and weak beam strong beam and weak column nonlinear time history analysis
下载PDF
Structural Retrofitting of Old Illyria Hote
18
作者 Feti Selmani Musa Stavileci 《Journal of Civil Engineering and Architecture》 2013年第12期1507-1513,共7页
Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a mas... Illyria hotel (formerly Bozhur) was built during the sixties in the heart of the actual Kosovo's capital Prishtina, according to former old Yugoslav standards in a Modernist architectural style. It represents a massive structural system with brick walls up to 54 cm thick and "avramenko" type reinforced concrete floors. The investor's aim was to add another two floors on the top of the existing ones and to build two level underground parking floors, a health spa centre, whilst at the vicinity of the existing building (the northern side) to erect a new 17 story-high brand new hotel and administration building. The retrofitting of the structure as well as construction of the new structure has been done in full accordance with the new structural Eurocodes' recommendations. 3D FEM (finite element method) modeling was used for the analysis and design, using ETABS v 9.5 nonlinear and ARSAP 2010 (Autodesk Robot Structural Analysis Professional 2010). Response spectrum design according to EC 8,3.2.2.4 has been used for seismic analysis and design with a reference peak ground acceleration on type A ground Of AgR = 0.25 g. 展开更多
关键词 structural retrofitting reinforced concrete shear walls foundation strengthening column jacketing
下载PDF
Study on the Distribution Law of Horizontal Seismic Forces between Slab-Column and Shear Wall
19
作者 GUO Nan GUO Yihong YANG Yingwei 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2012年第3期443-448,共6页
In slab column-shear wall structures,both the whole structure′s seismic behavior and failure mode are greatly influenced by the distribution of horizontal seismic forces between slab-column and shear wall.In this pap... In slab column-shear wall structures,both the whole structure′s seismic behavior and failure mode are greatly influenced by the distribution of horizontal seismic forces between slab-column and shear wall.In this paper,a pushover analysis of topical slab column-shear wall structure was carried out,the seismic shear force that the slab-column and shear wall should undertake was worked out,the influences of plastic internal force redistribution and structure stiffness characteristic value on horizontal seismic distribution were studied and the calculation formula was given.The analysis results showed that with the yield of the shear walls,the story shear force was undertaken by slab-columns correspondingly increased while with the decrease of characteristic value of stiffness of a structure,and the horizontal seismic force was undertaken by slab-columns correspondingly decreased.According to the code,the design of horizontal force distribution may be cause insecurity problems,so it is necessary to give the distribution law of horizontal seismic forces in slab-column shear wall structures as the supplement to the corresponding regulation of the Code. 展开更多
关键词 slab column-shear wall structure horizontal seismic force pushover analysis plastic internal force redistribution characteristic value of stiffness of structure
下载PDF
High-Rise Residential Reinforced Concrete Building Optimisation
20
作者 Haibei Xiong Miguel Angel Hidalgo Calvo 《Open Journal of Civil Engineering》 2015年第4期437-450,共14页
In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and ... In the last few decades structure optimisation has become a main task in a civil engineering project. As a matter of fact, due to the complexity and particularity of every structure, the great amount of variables and design criteria to considerate and many other factors, a general optimisation’s method is not simple to formulate. As a result, this paper focuses on how to provide a successful optimisation method for a particular building type, high-rise reinforced concrete buildings. The optimization method is based on decomposition of the main structure into substructures: floor system, vertical load resisting system, lateral load resisting system and foundation system;then each of the subsystems using the design criteria established at the building codes is improved. Due to the effect of the superstructure optimisation on the foundation system, vertical and lateral load resisting system is the last to be considered after the improvement of floor. Finally, as a case example, using the method explained in the paper, a 30-story-high high-rise residential building complex is analysed and optimised, achieving good results in terms of structural behaviour and diminishing the overall cost of the structure. 展开更多
关键词 structure Optimisation high-rise RESIDENTIAL Reinforced Concrete Buildings shear-wall structure Deep PILES Post GROUTING
下载PDF
上一页 1 2 191 下一页 到第
使用帮助 返回顶部