The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupansh...The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupanshui raw coal(LPS-R)and Liupanshui demineralized coal(LPS-D)were analyzed by FTIR and solid-state 13C-NMR.The pyrolysis experiments were carried out by TG,and the pyrolysis kinetics was analyzed by three iso-conversional methods.FTIR and 13C-NMR results suggested that the carbon structure of LPS coal was not altered greatly,while demineralization promoted the maturity of coal and the condensation degree of the aromatic ring,making the chemical structure of coal more stable.The oxygen-containing functional groups with low bond energy were reduced,and the ratio of aromatic carbon with high bond energy was increased,decreasing the pyrolysis reactivity.DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came from the cleavage of aliphatic covalent bonds.By pyrolysis kinetics analysis of LPS-R and LPS-D,the apparent activation energies were 76±4 to 463±5 kJ/mol and 84±2 to 758±12 kJ/mol,respectively,under different conversion rates.The reactivity of the demineralized coal was inhibited to some extent,as the apparent activation energy of pyrolysis for LPS-D increased by acid treatment.展开更多
The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit mod...The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit model involves a single slit,and the carbon nanotube model does not consider the molecular structure of coal.The difference of the adsorption capacity of coal to methane was determined without considering the external environmental conditions by the molecular structure and pore morphology of coal.The study of methane adsorption by coal under single condition cannot reveal its mechanism.In view of this,elemental analysis,FTIR spectrum,XPS electron energy spectrum,13C NMR,and isothermal adsorption tests were conducted on the semi-anthracite of Changping mine and the anthracite of Sihe Mine in Shanxi Province,China.The grand canonical Monte Carlo(GCMC)and molecular dynamics simulation method was used to establish the coal molecular structure model.By comparing the results with the experimental test results,the accuracy and practicability of the molecular structure model are confirmed.Based on the adsorption potential energy theory and aggregation model,the adsorption force of methane on aromatic ring structure,pyrrole nitrogen structure,aliphatic structure,and oxygen-containing functional group was calculated.The relationship between pore morphology,methane aggregation morphology,and coal molecular structure was revealed.The results show that the adsorption force of coal molecular structure on methane is as follows:aromatic ring structure(1.96 kcal/mol)>pyridine nitrogen(1.41 kcal/mol)>pyrrorole nitrogen(1.05 kcal/mol)>aliphatic structure(0.29 kcal/mol)>oxygen-containing functional group(0.20 kcal/mol).In the long and narrow regular pores of semi-anthracite and anthracite,methane aggregates in clusters at turns and aperture changes,and the adsorption and aggregation positions are mainly determined by the aromatic ring structure,the positions of pyrrole nitrogen and pyridine nitrogen.The degree of aggregation is controlled by the interaction energy and pore morphology.The results pertaining to coal molecular structure and pore morphology on methane adsorption and aggregation location and degree are conducive to the evaluation of the adsorption mechanism of methane in coal.展开更多
基金supported by the National Natural Science Foundation of China (51536002)the Fundamental Research Funds for the Central Universities (2015QNA12)the Open Sharing Fund for the Large-scale Instruments and Equipments of China University of Mining and Technology (CUMT).
文摘The critical issue in developing mature Oxy-Coal Combustion Steam System technology could be the reactivity of deminer-alized coal which,is closely related to its chemical structure.The chemical structures of Liupanshui raw coal(LPS-R)and Liupanshui demineralized coal(LPS-D)were analyzed by FTIR and solid-state 13C-NMR.The pyrolysis experiments were carried out by TG,and the pyrolysis kinetics was analyzed by three iso-conversional methods.FTIR and 13C-NMR results suggested that the carbon structure of LPS coal was not altered greatly,while demineralization promoted the maturity of coal and the condensation degree of the aromatic ring,making the chemical structure of coal more stable.The oxygen-containing functional groups with low bond energy were reduced,and the ratio of aromatic carbon with high bond energy was increased,decreasing the pyrolysis reactivity.DTG curve-fitting results revealed that the thermal weight loss of LPS coal mainly came from the cleavage of aliphatic covalent bonds.By pyrolysis kinetics analysis of LPS-R and LPS-D,the apparent activation energies were 76±4 to 463±5 kJ/mol and 84±2 to 758±12 kJ/mol,respectively,under different conversion rates.The reactivity of the demineralized coal was inhibited to some extent,as the apparent activation energy of pyrolysis for LPS-D increased by acid treatment.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province,China(No.21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(No.T2020-4).
文摘The adsorption,diffusion,and aggregation of methane from coal are often studied based on slit or carbon nanotube models and isothermal adsorption and thermodynamics theories.However,the pore morphology of the slit model involves a single slit,and the carbon nanotube model does not consider the molecular structure of coal.The difference of the adsorption capacity of coal to methane was determined without considering the external environmental conditions by the molecular structure and pore morphology of coal.The study of methane adsorption by coal under single condition cannot reveal its mechanism.In view of this,elemental analysis,FTIR spectrum,XPS electron energy spectrum,13C NMR,and isothermal adsorption tests were conducted on the semi-anthracite of Changping mine and the anthracite of Sihe Mine in Shanxi Province,China.The grand canonical Monte Carlo(GCMC)and molecular dynamics simulation method was used to establish the coal molecular structure model.By comparing the results with the experimental test results,the accuracy and practicability of the molecular structure model are confirmed.Based on the adsorption potential energy theory and aggregation model,the adsorption force of methane on aromatic ring structure,pyrrole nitrogen structure,aliphatic structure,and oxygen-containing functional group was calculated.The relationship between pore morphology,methane aggregation morphology,and coal molecular structure was revealed.The results show that the adsorption force of coal molecular structure on methane is as follows:aromatic ring structure(1.96 kcal/mol)>pyridine nitrogen(1.41 kcal/mol)>pyrrorole nitrogen(1.05 kcal/mol)>aliphatic structure(0.29 kcal/mol)>oxygen-containing functional group(0.20 kcal/mol).In the long and narrow regular pores of semi-anthracite and anthracite,methane aggregates in clusters at turns and aperture changes,and the adsorption and aggregation positions are mainly determined by the aromatic ring structure,the positions of pyrrole nitrogen and pyridine nitrogen.The degree of aggregation is controlled by the interaction energy and pore morphology.The results pertaining to coal molecular structure and pore morphology on methane adsorption and aggregation location and degree are conducive to the evaluation of the adsorption mechanism of methane in coal.