The effect of salt solutions(NaCl,Na2SO4 and CaCl2) on the conformational properties of partially hydrolyzed polyacrylamide(HPAM) was investigated by using static laser light scattering(SLLS).The special interaction b...The effect of salt solutions(NaCl,Na2SO4 and CaCl2) on the conformational properties of partially hydrolyzed polyacrylamide(HPAM) was investigated by using static laser light scattering(SLLS).The special interaction between CaCl2 solution and HPAM was also researched.Experimental results show that the chain structure of HPAM is interrelated with the charge density,the kind and the concentration of salt solutions.The mean-square radius of gyration(Rz) and the second virial coefficient(A2) of HPAM decrease with increasing concentration of salt solutions,and the salt effect tends towards the maximum when the concentration of salt solution is increased to some amount.展开更多
SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. P...SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.展开更多
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on...Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and hi...Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ...γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.展开更多
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ...When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.展开更多
The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multi...The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.展开更多
Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems ...Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.展开更多
Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out cons...Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out conscious migration behavior,adjustment of administrative divisions can be regarded as a quasi-natural experiment.The three cities of Hefei,Wuhu,and Ma'anshan,which are directly related to the adjustment of the administrative division of Chaohu,are taken as the treatment group,and the seven adjacent cities of Lu'an,Huainan,Chuzhou,Bengbu,Anqing,Chizhou,and Tongling are taken as the control group.Differences-in-Differences method and relevant control variables affecting the upgrading of industrial structure are used to test.The test results show that"Partitions of Chaohu"has a significant industrial structure upgrading effect by promoting the optimization of spatial layout,the cross-regional flow of production factors and the effective management of Chaohu Lake Basin.At the same time,the increase of total retail sales of consumer goods,urban fixed assets investment,public utility expenses in science,education,culture and health,and population plays a significant positive role in promoting the upgrading of industrial structure,while foreign direct investment plays a certain inhibition role in the upgrading of industrial structure.In order to meet the ever-developing space demands and enhance the impact on surrounding areas,the Hefei metropolitan area should be driven by technological innovation,strengthen the integration of industrial chains,improve the business environment and transportation network,and continuously promote the upgrading of industrial structure and the formation and development of new productive forces.展开更多
Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
In the context of globalization,cultural exchanges among countries are becoming increasingly intimate.As we embark on a new era,the external promotion of the red culture of Party history has emerged as a crucial avenu...In the context of globalization,cultural exchanges among countries are becoming increasingly intimate.As we embark on a new era,the external promotion of the red culture of Party history has emerged as a crucial avenue for conveying the good voice of China,showcasing Chinese wisdom,and enhancing China’s image.Xi Jinping Erzählt GeschichtenÜber Die Kommunistische Partei Chinas includes over 80 stories narrated by General Secretary Xi Jinping,providing readers worldwide with a deeper understanding of the revolutionary spirit of the Communist Party of China.This paper systematically categorizes and analyzes the four-character phrases found in Xi Jinping Erzählt GeschichtenÜber Die Kommunistische Partei Chinas,employing the theory of cultural translation to explore translation strategies for these phrases in the context of Party history literature.This research aims to promote the global dissemination of China’s red culture and foster a greater understanding of China in the world.展开更多
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional imag...Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.展开更多
Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were ...Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.展开更多
The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materia...The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.展开更多
[Objective] This study aimed to analyze the genetic structure of eight populations of Spartina alterniflora in China at the nuclear DNA level.[Method] The EH277045-derived sequences were amplified from 75 samples in 8...[Objective] This study aimed to analyze the genetic structure of eight populations of Spartina alterniflora in China at the nuclear DNA level.[Method] The EH277045-derived sequences were amplified from 75 samples in 8 populations and directly sequenced.Nucleotide diversity,haplotype diversity,the mean value of Nei's genetic distance,genetic differentiation index FST and other genetic parameters were calculated to estimate the genetic diversity and genetic differentiation of S.alterniflora populations in China.[Result] 75 samples were divided into 25 haplotypes by 28 polymorphic sites.Relatively high nucleotide diversity(π=0.011) and haplotype diversity(Hd=0.794) were detected.The mean value of Nei's genetic distance and genetic differentiation index FST among eight populations were 0.056 and 0.222,respectively,the Nei's genetic distance ranged from 0.000 to 0.189 and FST ranged from 0.000 to 0.444 between each pair of the eight populations.AMOVA result revealed that 79% and 21% of the total genetic variation was partitioned within and among S.alterniflora populations,respectively.[Conclusion] At the nuclear DNA level,there were a relatively high level of genetic diversity and a relatively low level of genetic differentiation among S.alterniflora populations in China,and the genetic diversity existed mainly within rather than among populations.展开更多
Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional cov...Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional coverage (VFC), litter thickness, soi particle size distribution and nutrient content at different vertical level, analyze the correlations between vegetation characters and soil properties, and compare the dif ferences in the VFC, litter thickness, soil particle size distribution and nutrient con- tent among different erosion degrees and vertical structure types. The result., showed that the VFC and litter thickness were all negatively related to erosion de gree; they were positively related to soil organic matter content, total nitrogen con- tent and total phosphorus content, but not significantly correlated with soil tota potassium content. When the VFC was higher than 50% and litter thickness wa.' higher than 20 ram, the water and soil could be effectively conserved; and the plan litter showed better water and soil conservation effect than the upper vegetation o~ canopy layer. In the vertical structure types of different vegetations, the forest-shrub grass, forest-shrub, shrub-grass and pure grass all could promote vegetation growth improve soil structure and maintain soil fertility.展开更多
基金Project(50673033) supported by the National Natural Science Foundation of China
文摘The effect of salt solutions(NaCl,Na2SO4 and CaCl2) on the conformational properties of partially hydrolyzed polyacrylamide(HPAM) was investigated by using static laser light scattering(SLLS).The special interaction between CaCl2 solution and HPAM was also researched.Experimental results show that the chain structure of HPAM is interrelated with the charge density,the kind and the concentration of salt solutions.The mean-square radius of gyration(Rz) and the second virial coefficient(A2) of HPAM decrease with increasing concentration of salt solutions,and the salt effect tends towards the maximum when the concentration of salt solution is increased to some amount.
文摘SrBi4Ti4O15 powder was synthesized by conventional solid state synthesis ( CS ) and molten salt synthesis ( MSS ) . MSS method can synthesize plate-like SrBi4Ti4O15 at lower temperature (900℃) than CS method. Plate-like form becomes more distinct when the synthesis temperature increases. This would help cause the grain orientation of the ceramics after sintering. The sintered samples of MSS had grain orientation at (0,0, 10) plane. The degree of (0,0,10) grain orientation F was 62.1% . Hot pressing made (0,0,10) grain orientation more distinct ( F = 85.7% ). The microstructures of the sintered samples were detected by SEM. Due to the grain orientation the density of samples fabricated by MSS was lower than that of prepared by CS.
基金financially supported by the National Natural Science Foundation of China(Nos.52425408 and 52304345)the Fundamental Research Funds for the Central Universities,China(No.2023CDJXY-016)the Postdoctoral Science Foundation of Chongqing(No.CSTB2023NSCQ-BHX0174)。
文摘Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金supported by the Innovative Research Group Project of the National Natural Science Foundation of China(T2121004)Key Programme(52235007)National Outstanding Youth Foundation of China(52325504).
文摘Hydrogel scaffolds have numerous potential applications in the tissue engineering field.However,tough hydrogel scaffolds implanted in vivo are seldom reported because it is difficult to balance biocompatibility and high mechanical properties.Inspired by Chinese ramen,we propose a universal fabricating method(printing-P,training-T,cross-linking-C,PTC&PCT)for tough hydrogel scaffolds to fill this gap.First,3D printing fabricates a hydrogel scaffold with desired structures(P).Then,the scaffold could have extraordinarily high mechanical properties and functional surface structure by cycle mechanical training with salting-out assistance(T).Finally,the training results are fixed by photo-cross-linking processing(C).The tough gelatin hydrogel scaffolds exhibit excellent tensile strength of 6.66 MPa(622-fold untreated)and have excellent biocompatibility.Furthermore,this scaffold possesses functional surface structures from nanometer to micron to millimeter,which can efficiently induce directional cell growth.Interestingly,this strategy can produce bionic human tissue with mechanical properties of 10 kPa-10 MPa by changing the type of salt,and many hydrogels,such as gelatin and silk,could be improved with PTC or PCT strategies.Animal experiments show that this scaffold can effectively promote the new generation of muscle fibers,blood vessels,and nerves within 4 weeks,prompting the rapid regeneration of large-volume muscle loss injuries.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.
基金supported in part by Award 2121063 from National Science Foundation(to YM)AG66986 from the National Institutes of Health(to MSW).
文摘γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general.
基金supported by the Project on Excellent Post-Graduate Dissertation of Hohai University,Nanjing,China(422003508)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX23_0187+2 种基金422003287)the National Natural Science Foundation of China(52250410359)Young Elite Scientists Sponsorship Program by Jiangsu Provincial Association for Science and Technology(TJ-2023-043).
文摘When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)the National Key Research and Development Program of China(No.2022YFA1602404)+1 种基金National Natural Science Foundation(Nos.U1832129 and 11975210)Youth Innovation Promotion Association CAS(No.2017309)。
文摘The exploration of exotic shapes and properties of atomic nuclei,e.g.,αcluster and toroidal shape,is a fascinating field in nuclear physics.To study the decay of these nuclei,a novel detector aimed at detecting multipleα-particle events was designed and constructed.The detector comprises two layers of double-sided silicon strip detectors(DSSD)and a cesium iodide scintillator array coupled with silicon photomultipliers array as light sensors,which has the advantages of their small size,fast response,and large dynamic range.DSSDs coupled with cesium iodide crystal arrays are used to distinguish multipleαhits.The detector array has a compact and integrated design that can be adapted to different experimental conditions.The detector array was simulated using Geant4,and the excitation energy spectra of someα-clustering nuclei were reconstructed to demonstrate the performance.The simulation results show that the detector array has excellent angular and energy resolutions,enabling effective reconstruction of the nuclear excited state by multipleαparticle events.This detector offers a new and powerful tool for nuclear physics experiments and has the potential to discover interesting physical phenomena related to exotic nuclear structures and their decay mechanisms.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12262005,11962003,and 11602062)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024AL138)the Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX096Y).
文摘Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x a)2+(y1)2+(z 1/a)2=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.
文摘Administrative regions are an important environment for the operation of China's market economy.The relevant economic subjects cannot predict the policy of adjustment of administrative divisions and carry out conscious migration behavior,adjustment of administrative divisions can be regarded as a quasi-natural experiment.The three cities of Hefei,Wuhu,and Ma'anshan,which are directly related to the adjustment of the administrative division of Chaohu,are taken as the treatment group,and the seven adjacent cities of Lu'an,Huainan,Chuzhou,Bengbu,Anqing,Chizhou,and Tongling are taken as the control group.Differences-in-Differences method and relevant control variables affecting the upgrading of industrial structure are used to test.The test results show that"Partitions of Chaohu"has a significant industrial structure upgrading effect by promoting the optimization of spatial layout,the cross-regional flow of production factors and the effective management of Chaohu Lake Basin.At the same time,the increase of total retail sales of consumer goods,urban fixed assets investment,public utility expenses in science,education,culture and health,and population plays a significant positive role in promoting the upgrading of industrial structure,while foreign direct investment plays a certain inhibition role in the upgrading of industrial structure.In order to meet the ever-developing space demands and enhance the impact on surrounding areas,the Hefei metropolitan area should be driven by technological innovation,strengthen the integration of industrial chains,improve the business environment and transportation network,and continuously promote the upgrading of industrial structure and the formation and development of new productive forces.
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
文摘In the context of globalization,cultural exchanges among countries are becoming increasingly intimate.As we embark on a new era,the external promotion of the red culture of Party history has emerged as a crucial avenue for conveying the good voice of China,showcasing Chinese wisdom,and enhancing China’s image.Xi Jinping Erzählt GeschichtenÜber Die Kommunistische Partei Chinas includes over 80 stories narrated by General Secretary Xi Jinping,providing readers worldwide with a deeper understanding of the revolutionary spirit of the Communist Party of China.This paper systematically categorizes and analyzes the four-character phrases found in Xi Jinping Erzählt GeschichtenÜber Die Kommunistische Partei Chinas,employing the theory of cultural translation to explore translation strategies for these phrases in the context of Party history literature.This research aims to promote the global dissemination of China’s red culture and foster a greater understanding of China in the world.
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.
基金Projects(50934002,51074013,51304076,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars Innovative Research Team in Universities,ChinaProject(2012M510007)supported by China Postdoctoral Science Foundation
文摘Methods and procedures of three-dimensional (3D) characterization of the pore structure features in the packed ore particle bed are focused. X-ray computed tomography was applied to deriving the cross-sectional images of specimens with single particle size of 1-2, 2-3, 3-4, 4-5, 5-6, 6-7, 7-8, 8-9, 9-10 ram. Based on the in-house developed 3D image analysis programs using Matlab, the volume porosity, pore size distribution and degree of connectivity were calculated and analyzed in detail. The results indicate that the volume porosity, the mean diameter of pores and the effective pore size (d50) increase with the increasing of particle size. Lognormal distribution or Gauss distribution is mostly suitable to model the pore size distribution. The degree of connectivity investigated on the basis of cluster-labeling algorithm also increases with increasing the particle size approximately.
文摘Benthic macroinvertebrate communities in Spartina alterniflora zones in the Yangtze Estuary, in China, were investigated seasonally in 2005, and their structure and biodiversity were analyzed. Twenty-one species were identified, across four Classes; 10 species of Crustacea, five species of Polychaeta, five species of Gastropoda, and one species of Lamellibranchia. Dominant species included: Assiminea sp., Notomastus latericeus, Cerithidea largillierl, Gtauconome chinensi and Gammaridae sp. Functional groups were comprised of a phytophagous group and a detritivorous group. The average density of all benthic macroinvertebrates was 650.5 ±719.2 inds/m^2 in the survey area. The high value of the standard deviation of the average density was a result of abundant Assiminea sp. at Beihu tidal flats. The average density of macroinvertebrates from Beihu tidal flat, Chongming Dongtan to Jinshanwei tidal flat decreased gradually. There was significant difference between compositions and abundance of macroinvertebrates along the estuary gradient (P 〈 0.05). The density and biodiversity were highest in summer and lowest in winter. The mean biomass of macroinvertebrates was 20.8 ± 6.1 g/m^2. Biomass changed seasonally in the same way as density, with the change in biomass being: summer (Aug.) 〉autumn (Oct.) 〉spring (Apr.) 〉 winter (Dec.). A BIO-ENV analysis showed that the mean grain size of sediment, height of Spartina and salinity were the ma- jor factors which affected the structure of the macroinvertebrate community. Variations in the community structure were probably caused by the population dynamics of S. alterniflora along with the variation in sampling time and location.
基金Projects(51134007,21003161,21250110060) supported by the National Natural Science Foundation of ChinaProject(11MX10) supported by Central South University Annual Mittal-Founded Innovation ProjectProject(2011ssxt086) supported by Fundamental Research Funds for the Central Universities,China
文摘The recent advancement in the design,synthesis,and fabrication of micro/nano structured LiNixCoyMnzO2 with one-,two-,and three-dimensional morphologies was reviewed.The major goal is to highlight LiNixCoyMnzO2 materials,which have been utilized in lithium ion batteries with enhanced energy and power density,high energy efficiency,superior rate capability and excellent cycling stability resulting from the doping,surface coating,nanocomposites and nano-architecturing.
基金Supported by National Natural Science Foundation of China(30900161)~~
文摘[Objective] This study aimed to analyze the genetic structure of eight populations of Spartina alterniflora in China at the nuclear DNA level.[Method] The EH277045-derived sequences were amplified from 75 samples in 8 populations and directly sequenced.Nucleotide diversity,haplotype diversity,the mean value of Nei's genetic distance,genetic differentiation index FST and other genetic parameters were calculated to estimate the genetic diversity and genetic differentiation of S.alterniflora populations in China.[Result] 75 samples were divided into 25 haplotypes by 28 polymorphic sites.Relatively high nucleotide diversity(π=0.011) and haplotype diversity(Hd=0.794) were detected.The mean value of Nei's genetic distance and genetic differentiation index FST among eight populations were 0.056 and 0.222,respectively,the Nei's genetic distance ranged from 0.000 to 0.189 and FST ranged from 0.000 to 0.444 between each pair of the eight populations.AMOVA result revealed that 79% and 21% of the total genetic variation was partitioned within and among S.alterniflora populations,respectively.[Conclusion] At the nuclear DNA level,there were a relatively high level of genetic diversity and a relatively low level of genetic differentiation among S.alterniflora populations in China,and the genetic diversity existed mainly within rather than among populations.
基金Supported by National Natural Science Foundation of China(4157141541071281)+1 种基金Natural Science Foundation of Jiangsu Province(BK20131078)"Qinglan Project"of Jiangsu Province~~
文摘Based on the vertical stratification type of vegetation in the 48 plots (15m×15 m) in Hetian Town, Changting County, Fujian Province, this study was conduct ed to determine the overall vegetation fractional coverage (VFC), litter thickness, soi particle size distribution and nutrient content at different vertical level, analyze the correlations between vegetation characters and soil properties, and compare the dif ferences in the VFC, litter thickness, soil particle size distribution and nutrient con- tent among different erosion degrees and vertical structure types. The result., showed that the VFC and litter thickness were all negatively related to erosion de gree; they were positively related to soil organic matter content, total nitrogen con- tent and total phosphorus content, but not significantly correlated with soil tota potassium content. When the VFC was higher than 50% and litter thickness wa.' higher than 20 ram, the water and soil could be effectively conserved; and the plan litter showed better water and soil conservation effect than the upper vegetation o~ canopy layer. In the vertical structure types of different vegetations, the forest-shrub grass, forest-shrub, shrub-grass and pure grass all could promote vegetation growth improve soil structure and maintain soil fertility.