Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
The construction of high-speed rail(HSR)network has promoted the social-economic ties of cities,accelerated the compression of time and space,and changed the pattern of regional development.In this paper,with the adop...The construction of high-speed rail(HSR)network has promoted the social-economic ties of cities,accelerated the compression of time and space,and changed the pattern of regional development.In this paper,with the adoption of the operation frequency data of HSR from 12306 website,and based on the HSR connection strength model and social network analysis model,as well as according to the HSR connection strength,HSR network density,centrality,agglomeration subgroup,and other indicators,we analyzed the characteristics of HSR network structure in Northeast China.Results show that the number of HSR cities in Northeast China is small,cities in HSR network generally exhibit weak connectivity,and the existence of HSR network marginalizes cities such as Ulanhot,Baicheng,and Songyuan,which significantly reduce the overall network connectivity of Northeast China.The overall centrality of HSR network in Northeast China is characterized by“one axis,four edges”;specifically,the one axis is located in Harbin-Dalian transportation line and the four edges are located on both sides of the main axis of Harbin-Dalian transportation line.Eight agglomeration subgroups(four double city subgroups and four multi city subgroups)have formed in Northeast China.The core status of Shenyang in HSR network is improved significantly,and“one axis and two wings”HSR network in Liaoning Province is improved significantly.With the gradual expansion of Chaoyang-Fuxin,Dandong-Benxi,and Jilin-Yanji branch networks,the“point axis”HSR network mode in Northeast China has gradually developed and matured.In the future,it is recommended to rely on eight agglomerating subgroups to encrypt HSR network structure,create secondary node central cities,and gradually build a new pattern of opening up in Northeast China.展开更多
Most phages—viruses infecting prokaryotes—inject their genomes via a tail structure.The central tail tube,composed of tail tube protein(TTP),typically forms conserved hexameric or trimeric rings.In this paper,we rep...Most phages—viruses infecting prokaryotes—inject their genomes via a tail structure.The central tail tube,composed of tail tube protein(TTP),typically forms conserved hexameric or trimeric rings.In this paper,we report a novel pentameric TTP assembly,solved by cryo-electron microscopy(cryo-EM)at 3.5 A and 3.7 A resolution.Structural analysis reveals a highly negatively charged inner surface of this pentameric tube.Key residues in the loop connectingβ3 andβ4 strands are crucial for pentameric ring formation.Mismatches in interactions between stacked layers can induce curvature in the tube.The cryo-EM structure of the TTP polymer at the tube’s end shows thatβ-strands spanning amino acids 27-65 shift toward the central tunnel,potentially obstructing the passage of the phage genome.This study provides new structural insights into a unique TTP assembly,enhancing our understanding of phage assembly processes.展开更多
This paper analyzed characteristics of tourism resources in Ji'an City,and carried out quantitative analysis of local tourism resources based on agglomeration effect of resources,connectivity analysis,and accessib...This paper analyzed characteristics of tourism resources in Ji'an City,and carried out quantitative analysis of local tourism resources based on agglomeration effect of resources,connectivity analysis,and accessibility analysis. The results showed that the city has poor loop of tourism network,major scenic areas(spots) have moderate network accessibility,in view of this,suggestions for the optimum development of local tourism industry were proposed.展开更多
Through the comparative analysis of steel plate reinforced, ceramics reinforced and non- reinforced joints under loading condition, the feasibility of strengthening steel joint of architectural structure was studied. ...Through the comparative analysis of steel plate reinforced, ceramics reinforced and non- reinforced joints under loading condition, the feasibility of strengthening steel joint of architectural structure was studied. By using element birth and death technology simulation of the finite element software ANSYS, it is found that when the reinforced structure is 10 mm in thickness and using steel structure to reinforce the concemed areas, the equivalent stress in concerned regionals reduces by 31.1% compared with that when the structure is not reinforced. When reinforced with ceramics, the equivalent stress in concerned regionals reduces by 24.1% compared with that reinforced with steels; when the reinforced structure is 20 mm in thickness using steels to reinforce the concerned area, the equivalent stress in concerned regionals reduces by 39.4% compared with that when the structure is not reinforced. When using ceramics to reinforce the concerned areas, the eauivalent stress only decreases by 3.7% compared with that reinforced with steels.展开更多
With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differe...The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2 Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance.展开更多
Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and...Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.展开更多
Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-rel...Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-release structure was made of high-density polyethylene(HDPE) and connected the fuse and the projectile body through internal and external threads.To study the safety of the slowrelease structure under artillery launching overload,mechanical analysis of the slow-release structure was simulated via finite element analysis(FEA).The impacts of various factors(e.g.,fuse mass,number of threads,and nominal diameter of internal threads of the slow-release structure) on the connection strength of the slow-release structure were studied.A strength-prediction model based on the fuse mass and internal thread parameters was established by fitting the maximum effective stress of the slowrelease structure.This led to good prediction results.In conclusion,this study provides references and theoretical support for the design of thermal protection structures insensitive to ammunition.展开更多
Landscape connectivity is important for energy and material flow in ecosystems as well as for the survival of species. The landscape structure influences and reflects the degree of landscape connectivity. In order to ...Landscape connectivity is important for energy and material flow in ecosystems as well as for the survival of species. The landscape structure influences and reflects the degree of landscape connectivity. In order to study the coupling relationship between landscape structure and connectivity and reveal the succession relationship between its structure and connectivity in the typical karst plateau area. The study analyzed the typical area of Houzhai River in Puding County, Anshun City, Guizhou Province, according to the landscape pattern index and probability landscape connectivity index. The results show:(1) The landscape structure of the study area A is mainly characterized by large patches and uniform distribution. The main land is woodland and cultivated land, and the overall landscape is low fragmentation.(2) The landscape structure of the study area B is mainly characterized by the clustering of a certain type of land cover and the uneven distribution of the patches, for example, cultivated land. Other types of patches are scatteredly distributed, and the overall landscape is highly fragmented.(3) The study area A, B in 100, 500, 1000, 2000, 3000, 5 distance thresholds of landscape connectivity were 1.55, 1.99, 2.26, 2.49, 2.58 and 0.02, 0.10, 0.15, 0.19, 0.20, respectively. The average landscape connectivity is 2. 18 and 0. 13, respectively. Study Area A has a higher degree of landscape connectivity than B. Landscape pattern indicators can represent the landscape structure and probability landscape connectivity index calculates the landscape connectivity in the study area. The results of the study can provide a basis for ecological restoration of plateau karst regions and well-oriented rural development planning.展开更多
Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This p...Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This puts high constraints and challenges on the design of such networks.Structural changing of the network is one of such challenges that affect the network performance,includ-ing the required quality of service(QoS).The fractal dimension(FD)is consid-ered one of the main indicators used to represent the structure of the communication network.To this end,this work analyzes the FD of the network and its use for telecommunication networks investigation and planning.The clus-ter growing method for assessing the FD is introduced and analyzed.The article proposes a novel method for estimating the FD of a communication network,based on assessing the network’s connectivity,by searching for the shortest routes.Unlike the cluster growing method,the proposed method does not require multiple iterations,which reduces the number of calculations,and increases the stability of the results obtained.Thus,the proposed method requires less compu-tational cost than the cluster growing method and achieves higher stability.The method is quite simple to implement and can be used in the tasks of research and planning of modern and promising communication networks.The developed method is evaluated for two different network structures and compared with the cluster growing method.Results validate the developed method.展开更多
Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibilit...Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibility of solving some intractable problems. In the proposed procedure,vertex building blocks consisting of 3,4-armed branched junction molecules are selectively used to form different graph structures. After separating these graph structures by gel electrophoresis,the connec-tivity of this graph can be determined. Furthermore,the amount of potential solutions can be reduced by a theorem of graph theory.展开更多
The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considerin...The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.展开更多
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i...In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.展开更多
In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifte...In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.展开更多
The sediment in Chengbei area of the Huanghe (Yellow River) subaqueous delta is the object of a reseach project in this article. The accumulating and dissipating effects following the change of time are considered fir...The sediment in Chengbei area of the Huanghe (Yellow River) subaqueous delta is the object of a reseach project in this article. The accumulating and dissipating effects following the change of time are considered first in the study area and the distributing curves of excess pore water pressure along with time and depth in the soil stratum are gained; the possibility of silt liquefaction is evaluated using the computing values and the affecting depth of liquefaction is given. This paper quantitatively analyzes the dynamic response of seafloor soil under the cyclic loading of waves and makes an inquiry into the instable mechanism of soil.展开更多
The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems....The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.展开更多
High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research objec...High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.展开更多
Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecul...Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.展开更多
Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were...Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金the National Natural Science Foundation of China(41871151).
文摘The construction of high-speed rail(HSR)network has promoted the social-economic ties of cities,accelerated the compression of time and space,and changed the pattern of regional development.In this paper,with the adoption of the operation frequency data of HSR from 12306 website,and based on the HSR connection strength model and social network analysis model,as well as according to the HSR connection strength,HSR network density,centrality,agglomeration subgroup,and other indicators,we analyzed the characteristics of HSR network structure in Northeast China.Results show that the number of HSR cities in Northeast China is small,cities in HSR network generally exhibit weak connectivity,and the existence of HSR network marginalizes cities such as Ulanhot,Baicheng,and Songyuan,which significantly reduce the overall network connectivity of Northeast China.The overall centrality of HSR network in Northeast China is characterized by“one axis,four edges”;specifically,the one axis is located in Harbin-Dalian transportation line and the four edges are located on both sides of the main axis of Harbin-Dalian transportation line.Eight agglomeration subgroups(four double city subgroups and four multi city subgroups)have formed in Northeast China.The core status of Shenyang in HSR network is improved significantly,and“one axis and two wings”HSR network in Liaoning Province is improved significantly.With the gradual expansion of Chaoyang-Fuxin,Dandong-Benxi,and Jilin-Yanji branch networks,the“point axis”HSR network mode in Northeast China has gradually developed and matured.In the future,it is recommended to rely on eight agglomerating subgroups to encrypt HSR network structure,create secondary node central cities,and gradually build a new pattern of opening up in Northeast China.
基金supported by the Chinese Academy of Sciences (Grant Nos. E4V4061 and E2VK311)supported by the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (Grant No. 2021-I2M-1-037)supported by the National Natural Science Foundation of China (Grant Nos. 81971985 and 82272308).
文摘Most phages—viruses infecting prokaryotes—inject their genomes via a tail structure.The central tail tube,composed of tail tube protein(TTP),typically forms conserved hexameric or trimeric rings.In this paper,we report a novel pentameric TTP assembly,solved by cryo-electron microscopy(cryo-EM)at 3.5 A and 3.7 A resolution.Structural analysis reveals a highly negatively charged inner surface of this pentameric tube.Key residues in the loop connectingβ3 andβ4 strands are crucial for pentameric ring formation.Mismatches in interactions between stacked layers can induce curvature in the tube.The cryo-EM structure of the TTP polymer at the tube’s end shows thatβ-strands spanning amino acids 27-65 shift toward the central tunnel,potentially obstructing the passage of the phage genome.This study provides new structural insights into a unique TTP assembly,enhancing our understanding of phage assembly processes.
基金Supported by"Twelfth Five-year Plan"of Social Science Research Program of Jilin Provincial Development of Education(2012NO.532,2013NO.333)
文摘This paper analyzed characteristics of tourism resources in Ji'an City,and carried out quantitative analysis of local tourism resources based on agglomeration effect of resources,connectivity analysis,and accessibility analysis. The results showed that the city has poor loop of tourism network,major scenic areas(spots) have moderate network accessibility,in view of this,suggestions for the optimum development of local tourism industry were proposed.
基金Funded by the National Natural Science Foundation of China (No.51178365)
文摘Through the comparative analysis of steel plate reinforced, ceramics reinforced and non- reinforced joints under loading condition, the feasibility of strengthening steel joint of architectural structure was studied. By using element birth and death technology simulation of the finite element software ANSYS, it is found that when the reinforced structure is 10 mm in thickness and using steel structure to reinforce the concemed areas, the equivalent stress in concerned regionals reduces by 31.1% compared with that when the structure is not reinforced. When reinforced with ceramics, the equivalent stress in concerned regionals reduces by 24.1% compared with that reinforced with steels; when the reinforced structure is 20 mm in thickness using steels to reinforce the concerned area, the equivalent stress in concerned regionals reduces by 39.4% compared with that when the structure is not reinforced. When using ceramics to reinforce the concerned areas, the eauivalent stress only decreases by 3.7% compared with that reinforced with steels.
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
文摘The formation and the thermal stability of a connected hard skeleton structure(CHSS) in the matrix of Mg-5Al-2Sn-5Ca(ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2 Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance.
基金Under the auspices of the National Natural Science Foundation of China(No.41971202)the National Natural Science Foundation of China(No.42201181)the Fundamental research funding targets for central universities(No.2412022QD002)。
文摘Urban tourism is considered a complex system,and multiscale exploration of the organizational patterns of attraction networks has become a topical issue in urban tourism,so exploring the multiscale characteristics and connection mechanisms of attraction networks is important for understanding the linkages between attractions and even the future destination planning.This paper uses geotagging data to compare the links between attractions in Beijing,China during four different periods:the pre-Olympic period(2004–2007),the Olympic Games and subsequent‘heat period’(2008–2013),the post-Olympic period(2014–2019),and the COVID-19(Corona Virus Disease 2019)pandemic period(2020–2021).The aim is to better understand the evolution and patterns of attraction networks at different scales in Beijing and to provide insights for tourism planning in the destination.The results show that the macro,meso-,and microscales network characteristics of attraction networks have inherent logical relationships that can explain the commonalities and differences in the development process of tourism networks.The macroscale attraction network degree Matthew effect is significant in the four different periods and exhibits a morphological monocentric structure,suggesting that new entrants are more likely to be associated with attractions that already have high value.The mesoscale links attractions according to the common purpose of tourists,and the results of the community segmentation of the attraction networks in the four different periods suggest that the functional polycentric structure describes their clustering effect,and the weak links between clusters result from attractions bound by incomplete information and distance,and the functional polycentric structure with a generally more efficient network of clusters.The pattern structure at the microscale reveals the topological transformation relationship of the regional collaboration pattern,and the attraction network structure in the four different periods has a very similar importance profile structure suggesting that the attraction network has the same construction rules and evolution mechanism,which aids in understanding the attraction network pattern at both macro and micro scales.Important approaches and practical implications for planners and managers are presented.
文摘Based on the 60 mm artillery grenade,a slow-release structure was designed to reduce the severity of ammunitions response to accidental thermal stimulation and improve the thermal stability of ammunitions.The slow-release structure was made of high-density polyethylene(HDPE) and connected the fuse and the projectile body through internal and external threads.To study the safety of the slowrelease structure under artillery launching overload,mechanical analysis of the slow-release structure was simulated via finite element analysis(FEA).The impacts of various factors(e.g.,fuse mass,number of threads,and nominal diameter of internal threads of the slow-release structure) on the connection strength of the slow-release structure were studied.A strength-prediction model based on the fuse mass and internal thread parameters was established by fitting the maximum effective stress of the slowrelease structure.This led to good prediction results.In conclusion,this study provides references and theoretical support for the design of thermal protection structures insensitive to ammunition.
文摘Landscape connectivity is important for energy and material flow in ecosystems as well as for the survival of species. The landscape structure influences and reflects the degree of landscape connectivity. In order to study the coupling relationship between landscape structure and connectivity and reveal the succession relationship between its structure and connectivity in the typical karst plateau area. The study analyzed the typical area of Houzhai River in Puding County, Anshun City, Guizhou Province, according to the landscape pattern index and probability landscape connectivity index. The results show:(1) The landscape structure of the study area A is mainly characterized by large patches and uniform distribution. The main land is woodland and cultivated land, and the overall landscape is low fragmentation.(2) The landscape structure of the study area B is mainly characterized by the clustering of a certain type of land cover and the uneven distribution of the patches, for example, cultivated land. Other types of patches are scatteredly distributed, and the overall landscape is highly fragmented.(3) The study area A, B in 100, 500, 1000, 2000, 3000, 5 distance thresholds of landscape connectivity were 1.55, 1.99, 2.26, 2.49, 2.58 and 0.02, 0.10, 0.15, 0.19, 0.20, respectively. The average landscape connectivity is 2. 18 and 0. 13, respectively. Study Area A has a higher degree of landscape connectivity than B. Landscape pattern indicators can represent the landscape structure and probability landscape connectivity index calculates the landscape connectivity in the study area. The results of the study can provide a basis for ecological restoration of plateau karst regions and well-oriented rural development planning.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R66),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Next-generation networks,including the Internet of Things(IoT),fifth-generation cellular systems(5G),and sixth-generation cellular systems(6G),suf-fer from the dramatic increase of the number of deployed devices.This puts high constraints and challenges on the design of such networks.Structural changing of the network is one of such challenges that affect the network performance,includ-ing the required quality of service(QoS).The fractal dimension(FD)is consid-ered one of the main indicators used to represent the structure of the communication network.To this end,this work analyzes the FD of the network and its use for telecommunication networks investigation and planning.The clus-ter growing method for assessing the FD is introduced and analyzed.The article proposes a novel method for estimating the FD of a communication network,based on assessing the network’s connectivity,by searching for the shortest routes.Unlike the cluster growing method,the proposed method does not require multiple iterations,which reduces the number of calculations,and increases the stability of the results obtained.Thus,the proposed method requires less compu-tational cost than the cluster growing method and achieves higher stability.The method is quite simple to implement and can be used in the tasks of research and planning of modern and promising communication networks.The developed method is evaluated for two different network structures and compared with the cluster growing method.Results validate the developed method.
基金Supported by the National Natural Science Foundation of China (No.30370356 and No.60574041).
文摘Inspired by the potential computational capability of 3-Dimensional (3D) DNA structure,this paper presents a graph structure constructed by k-armed (k = 3or 4) branched junction DNA molecules to explore the possibility of solving some intractable problems. In the proposed procedure,vertex building blocks consisting of 3,4-armed branched junction molecules are selectively used to form different graph structures. After separating these graph structures by gel electrophoresis,the connec-tivity of this graph can be determined. Furthermore,the amount of potential solutions can be reduced by a theorem of graph theory.
文摘The inter-story drift stiffness considered the semirigidity of beam and column joints connection, and P-Delta second order effect of steel frame parts in the mixed structure is presented in the paper. After considering on the influence of semirigidity between steel beams and steel columns, second order effect of beam-column members for steel frame and structural second order effect, the traditional continuum analytial method used in RC shear-frames wall structure is developed to steel frames-reinforced concrete shear wall mixed structure subject to horizontal load in this paper. A continuum approach, which is suitable for analyzing steel frames-reinforced concrete shear wall mixed structure subject to horizontal load, is presented. The method is relatively simple and more practical. It will be referred to structural design for steel frames-reinforced concrete shear wall mixed structure.
基金The National Key Technology R& D Program of Chinaduring the 11th Five-Year Plan Period (No.2006BAJ18B03).
文摘In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2009CB623100)the National Natural Science Foundation of China(No.51378391)
文摘In order to facilitate the development and application of air entraining agents (AEA) in the high performance concrete, entrained air void structure parameters (air void size range from 10 to 1 600 mu m) of 28 d sifted mortar were measured by image analysis method. The relationship between the air void size distribution and strength of mortar was studied by methods of grey connection analysis and multiple linear regression analysis. The multiple linear regression equation was established with a correlation coefficient of 0.966. The weight of the affection of hierarchical porosity on the compressive strength ratio was also obtained. In addition, the effect of air voids on the paste-aggregate interfacial transition zone (ITZ) was analyzed by microhardness. The results show that the correlation between different pore size range and the compressive strength is negative. The effect of air void size distribution on 28 days compressive strength is different: under the condition of similar total porosity, with the increase of the porosity of the air void size, ranging from 10 to 200 mu m, and the decrease of the porosity, ranging from 200 to 1 600 mu m, the average air void diameter and mean free spacing are decreased; as well as the width of ITZ. On the contrary, the microhardness of the ITZ is increased while the compressive strength loss is decreased.
基金This project was financially supported by the National Science Foundation through Grant No.49476291
文摘The sediment in Chengbei area of the Huanghe (Yellow River) subaqueous delta is the object of a reseach project in this article. The accumulating and dissipating effects following the change of time are considered first in the study area and the distributing curves of excess pore water pressure along with time and depth in the soil stratum are gained; the possibility of silt liquefaction is evaluated using the computing values and the affecting depth of liquefaction is given. This paper quantitatively analyzes the dynamic response of seafloor soil under the cyclic loading of waves and makes an inquiry into the instable mechanism of soil.
基金The National Natural Science Foundation of China Under Grant. No.50608026The National Major Foundamental Program (973 Program) of China Under Grant No. 2007CB714204
文摘The electromagnetic mass damper (EMD) control system, as an innovative active control system to reduce structural vibration, offers many advantages over traditional active mass driver/damper (AMD) control systems. In this paper, studies of several EMD control strategies and bench-scale shaking table tests of a two-story model structure are described. First, two structural models corresponding to uncontrolled and Zeroed cases are developed, and parameters of these models are validated through sinusoidal sweep tests to provide a basis for establishing an accurate mathematical model for further studies. Then, a simplified control strategy for the EMD system based on the pole assignment control algorithm is proposed. Moreover, ideal pole locations are derived and validated through a series of shaking table tests. Finally, three benchmark earthquake ground motions and sinusoidal sweep waves are imposed onto the structure to investigate the effectiveness and feasibility of using this type of innovative active control system for structural vibration control. In addition, the robustness of the EMD system is examined. The test results show that the EMD system is an effective and robust system for the control of structural vibrations.
基金financially supported by the National Natural Science Foundation of China (Grant No. 51705132)the Science and Technology Department of Henan Province Natural Science Project (Grant No. 172102210215)+1 种基金Henan Postdoctoral Foundation, doctoral Foundation (2016BS008)the Education Department of Henan Province Natural Science Project (Grant No. 17A460008)
文摘High-performance connection frames are of great significance for ultra-high acceleration and ultra-precision positioning in macro-micro motion platforms. This paper first takes the connection frame as a research object,builds a finite element model(FEM) of the natural frequency of the frame, and then verifies the correctness of this model. The frequency sensitivity method is then used to perturb the structural parameters of the FEM of the connection frame, and the sensitivities of the first-order natural frequency and mass of the corresponding structural parameters are obtained by calculation and analysis. The design variables are also determined. The natural frequency is used as the optimization objective, and the design parameters and mass of the connection frame are constrained. The structural parameters of the connecting frame are obtained through optimization, and the model is built and verified by experiments. The results show that the first-order natural frequency of the connecting frame is effectively improved by the frequency sensitivity method, avoids resonance between the connecting frame and the voice coil motor, and realizes the lightweight design of the connection frame. This research provides a reliable basis for the stable operation and ultra-precision positioning of ultra-high acceleration macro-motion platforms.
文摘Many structure-property/activity studies use graph theoretical indices, which are based on the topological properties of a molecule viewed as a graph. Since topological indices can be derived directly from the molecular structure without any experimental effort, they provide a simple and straightforward method for property prediction. In this work the flash point of alkanes was modeled by a set of molecular connectivity indices (Х), modified molecular connectivity indices ( ^mХ^v ) and valance molecular connectivity indices ( ^mХ^v ), with ^mХ^v calculated using the hydrogen perturbation. A stepwise Multiple Linear Regression (MLR) method was used to select the best indices. The predicted flash points are in good agreement with the experimental data, with the average absolute deviation 4.3 K.
基金Project(51178203)supported by the National Natural Science Foundation of China
文摘Based on a simplified 3-DOF model of twin-tower structure linked by a sky-bridge,the frequency response functions,the displacement power spectral density(PSD)functions,and the time-averaged total vibration energy were derived,by assuming the white noise as the earthquake excitation.The effects of connecting parameters,such as linking stiffness ratio and linking damping ratio,on the structural vibration responses were then studied,and the optimal connecting parameters were obtained to minimize the vibration energy of either the independent monomer tower or the integral structure.The influences of sky-bridge elevation position on the optimal connecting parameters were also discussed.Finally,the distribution characteristics of the top displacement PSD and the structural responses,excited by El Centro,Taft and artificial waves,were compared in both frequency and time domain.It is found that the connecting parameters at either end of connection interactively affect the responses of the towers.The optimal connecting parameters can greatly improve the damping connections on their seismic reduction effectiveness,but are unable to reduce the seismic responses of the towers to the best extent simultaneously.It is also indicated that the optimal connecting parameters derived from the simplified 3-DOF model are applicable for two multi-story structures linked by a sky-bridge with dampers.The seismic reduction effectiveness obtained varies from 0.3 to 1.0 with different sky-bridge mass ratio.The displacement responses of the example structures are reduced by approximately 22% with sky-bridge connections.