Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). T...In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.展开更多
Three dimensional models of shaft were completed on CATIA Part Design module with the Chinese national standard (GB) process structures such as chamfers, threads and tool withdrawal grooves, center holes, flat/woodr...Three dimensional models of shaft were completed on CATIA Part Design module with the Chinese national standard (GB) process structures such as chamfers, threads and tool withdrawal grooves, center holes, flat/woodruff/gib head taper keyseats, grinding undercuts, straight-sidedsplines, circlip slots and collars. The modeling steps are arranged in dialog menu interface by VB 6.0, the shaft creator, that permits users input geometric feature based parameters explicitly, and the standardized processdata are reorganized in Excel files that can be invoked correspondingly in the modeling procedure. It is aimed that this process may supply a simple way for shaft rapid modeling and comprehensive discipline for engineering students in their professional design activities.展开更多
By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon ...By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
Background: To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this stud...Background: To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year.Method: The oat grains were kept as raw(control) or heated in an air-draft oven(dry roasting: DO) at 120 °C for 60 min and under microwave irradiation(MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy.Results: The results showed that rumen degradability of dry matter, protein and starch was significantly lower(P 〈0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation(-0.99, P 〈 0.01)was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation(0.99, P 〈 0.01) was found between protein β-sheet and crude protein.Conclusion: The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.展开更多
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
The correctness of workflow models is one of the major challenges in context of workflow analysis. The aim of this paper is to provide an improved Petri net-based reduction approach for verifying the correctness of wo...The correctness of workflow models is one of the major challenges in context of workflow analysis. The aim of this paper is to provide an improved Petri net-based reduction approach for verifying the correctness of workflow models. To the end, how to represent well-behaved building blocks and control structures of business processes by Petri nets is given at first, and then how to build well-structured process nets is presented. According to the structural characteristics of well-structured process nets, a set of legacy reduction rules are improved and extended, and then a complete Petri-net-based verification approach is proposed. The sound ness and the complexity with polynomial time for the improved re duction method are also proven.展开更多
Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent...In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent, give its numerical characteristics and the ruin probability of the individual risk model in the surplus process. In addition, we promote the number of insurance policies to a Poisson process with parameter λ, using martingale methods to obtain the upper bound of the ultimate ruin probability.展开更多
Polymer processing is a technology used to transfer raw materials into products with different shapes and functionalities and is a key step for polymer application.After years of development,the polymer processing tas...Polymer processing is a technology used to transfer raw materials into products with different shapes and functionalities and is a key step for polymer application.After years of development,the polymer processing task has changed from traditional processing,which mainly addresses the specific shapes of articles and focuses on the effect of processing on the structures and properties of polymers,to modern processing,which directly transforms a“designed structure”into commercial products via processing.It is the so-called“structuring”processing.Owing to the unique long-chain nature and slow topological relaxation,polymers are always driven and frozen into different nonequilibrium conformations,providing an effective way to design a given polymer material with desired structure and tunable performances via processing.Among the endless number of processing techniques,film casting is a prototypical pathway involving high supercooling or/and a strong flow field,based on which diverse thin polymer films have been successfully developed.In this review,taking isotactic polypropylene(i PP)film as an example,we highlight the strategy of“structuring”processing,in which we transform various crystalline structures of i PP into diverse commercial film products.展开更多
A novel co-rotating electrochemical machining method is proposed for fabricating convex structures on the inner surface of a revolving part.The electrodes motion and material removal method of co-rotating electrochemi...A novel co-rotating electrochemical machining method is proposed for fabricating convex structures on the inner surface of a revolving part.The electrodes motion and material removal method of co-rotating electrochemical machining are different from traditional electrochemical machining.An equivalent kinematic model is established to analyze the novel electrodes motion,since the anode and cathode rotate in the same direction while the cathode simultaneously feeds along the line of centres.According to the kinematic equations of the electrodes and Faraday’s law,a material removal model is established to simulate the evolution of the anode profile in co-rotating electrochemical machining.The simulation results indicate that the machining accuracy of the convex structure is strongly affected by the angular velocity ratio and the radius of the cathode tool.An increase of the angular velocity ratio can improve the machining accuracy of a convex structure.A small difference in the radius of the cathode tool will cause changes in the shape of the sidewalls of the convex structure.The width of the cathode window affects only the width of the convex structure and the inclination a of the sidewall.A relation between the width of the cathode window and the width of the convex structure was obtained.The formation process for a convex structure under electrochemical dissolution was revealed.Based on the simulation results,the optimal angular velocity ratio and cathode radius were selected for an experimental verification,and 12 convex structures were simultaneously fabricated on the inner surface of a thin-walled revolving part.The experimental results are in good agreement with the simulation results,which verifies the correctness of the theoretical analysis.Therefore,inner surface co-rotating electrochemical machining is an effective method for fabricating convex structures on the inner surface of a revolving part.展开更多
A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
In this article,the phenomenon of“information space”and its methods of study,its types,elementary structure and qualitative characteristics are discussed,the author’s definition of the concept of“information”is g...In this article,the phenomenon of“information space”and its methods of study,its types,elementary structure and qualitative characteristics are discussed,the author’s definition of the concept of“information”is given,the structure of the information process,and the phases,which are the basis for the evolution of the information space and the universe of human activity,are considered.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
The syntheses and structures of trinuclear Mo (W)-Fe-S cluster[MFe2S2(CO)8 (S,CNSEt2)]- (M=Mo, W), hexanuclear Fe-S cluster [Fe6S6-(CO)12]2- and undecanuclear Cu-Fe-S cluster [Cu5Fe6S6(CO)18(PPh3)2]-, containingFe2S2(...The syntheses and structures of trinuclear Mo (W)-Fe-S cluster[MFe2S2(CO)8 (S,CNSEt2)]- (M=Mo, W), hexanuclear Fe-S cluster [Fe6S6-(CO)12]2- and undecanuclear Cu-Fe-S cluster [Cu5Fe6S6(CO)18(PPh3)2]-, containingFe2S2(CO)6-units bave been summarized and the important vestiges left in their struc-tures reflecting the formation processes of the clusters have been found and discussed.Further inspecting some other typical clusters a regular unit construction in the forma-tion of the metal cluster compounds containing Fe2S2(CO)6-units has been figured outand applied to speculate and predict several new cluster compounds containing Fe2S2(CO)6-units.展开更多
Along with the explosive increase of product data management systems (PDMs),integrating polymorphic PDMs is becoming one of the focuses in the field. Aner brief describing several features of PDM, and market requireme...Along with the explosive increase of product data management systems (PDMs),integrating polymorphic PDMs is becoming one of the focuses in the field. Aner brief describing several features of PDM, and market requirements and required performance for integrating the polymorphic PDMs, the paper specializes in discussing some key technologies involved in virtual enterprise oriented integrated development. Some implementing strategies and procedures are proposed.展开更多
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based ...A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.展开更多
Based on the three-term decomposition model for turbulent flows, the fundamental equations for quasi-periodic motions are obtained, and the approximate analytical solutions of these second-order nonlinear partial diff...Based on the three-term decomposition model for turbulent flows, the fundamental equations for quasi-periodic motions are obtained, and the approximate analytical solutions of these second-order nonlinear partial differential equations are derived by using the match method. The effects on the mo- mentum, heat and mass transport processes in the wall turbulent flows can be estimated approximately.展开更多
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
基金financially supported by the National Key Basic Research Program of China (No.2010CB226805)the National Natural Science Foundation of China (Nos.51474136 and 51474013)+1 种基金the Opening Project Fund of State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology (No.MDPC2013KF06)the Research Award Fund for the Excellent Youth of Shandong University of Science and Technology (No.2011KYJQ106)
文摘In order to study the failure process of an anchorage structure and the evolution law of the body's defor- mation field, anchor push-out tests were carried out based on digital speckle correlation methods (DSCM). The stress distribution of the anchorage interface was investigated using the particle flow numerical simulation method. The results indicate that there are three stages in the deformation and fail- ure process of an anchorage structure: elastic bonding stage, a de-bonding stage and a failure stage. The stress distribution in the interface controls the stability of the structure. In the elastic bonding stage, the shear stress peak point of the interface is close to the loading end, and the displacement field gradually develops into a "V" shape, in the de-bonding stage, there is a shear stress plateau in the center of the anchorage section, and shear strain localization begins to form in the deformation field. In the failure stage, the bonding of the interface fails rapidly and the shear stress peak point moves to the anchorage free end. The anchorage structure moves integrally along the macro-cracl~ The de-bonding stage is a research focus in the deformation and failure process of an anchorage structure, and plays an important guiding role in roadway support design and prediction of the stability of the surrounding rock.
文摘Three dimensional models of shaft were completed on CATIA Part Design module with the Chinese national standard (GB) process structures such as chamfers, threads and tool withdrawal grooves, center holes, flat/woodruff/gib head taper keyseats, grinding undercuts, straight-sidedsplines, circlip slots and collars. The modeling steps are arranged in dialog menu interface by VB 6.0, the shaft creator, that permits users input geometric feature based parameters explicitly, and the standardized processdata are reorganized in Excel files that can be invoked correspondingly in the modeling procedure. It is aimed that this process may supply a simple way for shaft rapid modeling and comprehensive discipline for engineering students in their professional design activities.
文摘By means of scanning electron microscope(SEM)and high voltage electron microscope(HVEM)we have observed and analysed morphology and micro-structure of silicon oxide film with different thickness formed on(111)silicon monocrystal under dry oxygen atmosphere at 1100℃.Compared with their oxidation kinetic curves consisted of three stages,we suggested a mechanism on forming silicon oxide film.According to electron and X-ray diffraction analyses the silicon oxide films consisted of silica with different crystal structure.We also have discussed a stacking fault and a dislocation formed in the Si-Sio_2 interface region simulaneously forming silicon oxide film.
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.
基金supported by grants from the Prairie Oat Grower Association(POGA)Natural Sciences and Engineering Research Council of Canada(NSERC-federal government)Ministry of Agriculture Strategic Research Chair(PY)Program
文摘Background: To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year.Method: The oat grains were kept as raw(control) or heated in an air-draft oven(dry roasting: DO) at 120 °C for 60 min and under microwave irradiation(MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy.Results: The results showed that rumen degradability of dry matter, protein and starch was significantly lower(P 〈0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation(-0.99, P 〈 0.01)was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation(0.99, P 〈 0.01) was found between protein β-sheet and crude protein.Conclusion: The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
基金Supported by the Scientific Research Foundation of Edu-cation Agency of Liaoning Province (20040088) and Scientific ResearchFoundation of Dalian Nationalities University (20046202)
文摘The correctness of workflow models is one of the major challenges in context of workflow analysis. The aim of this paper is to provide an improved Petri net-based reduction approach for verifying the correctness of workflow models. To the end, how to represent well-behaved building blocks and control structures of business processes by Petri nets is given at first, and then how to build well-structured process nets is presented. According to the structural characteristics of well-structured process nets, a set of legacy reduction rules are improved and extended, and then a complete Petri-net-based verification approach is proposed. The sound ness and the complexity with polynomial time for the improved re duction method are also proven.
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
基金Jilin province education department"twelfth five-year"science and technology research plan project([2015]No.58)the science and technology innovation fund(No.XJJLG-2014-02)of Changchun University of Science and Technology
文摘In this paper, we study a class of ruin problems, in which premiums and claims are dependent. Under the assumption that premium income is a stochastic process, we raise the model that premiums and claims are dependent, give its numerical characteristics and the ruin probability of the individual risk model in the surplus process. In addition, we promote the number of insurance policies to a Poisson process with parameter λ, using martingale methods to obtain the upper bound of the ultimate ruin probability.
基金supported by the National Natural Science Foundation of China(52273037,52003168)the State Key Laboratory of Polymer Materials Engineering(sklpme2022-3-16)。
文摘Polymer processing is a technology used to transfer raw materials into products with different shapes and functionalities and is a key step for polymer application.After years of development,the polymer processing task has changed from traditional processing,which mainly addresses the specific shapes of articles and focuses on the effect of processing on the structures and properties of polymers,to modern processing,which directly transforms a“designed structure”into commercial products via processing.It is the so-called“structuring”processing.Owing to the unique long-chain nature and slow topological relaxation,polymers are always driven and frozen into different nonequilibrium conformations,providing an effective way to design a given polymer material with desired structure and tunable performances via processing.Among the endless number of processing techniques,film casting is a prototypical pathway involving high supercooling or/and a strong flow field,based on which diverse thin polymer films have been successfully developed.In this review,taking isotactic polypropylene(i PP)film as an example,we highlight the strategy of“structuring”processing,in which we transform various crystalline structures of i PP into diverse commercial film products.
基金supported by the National Natural Science Foundation of China(No.52175414)National Natural Science Foundation of China for Creative Research Groups(No.51921003)the China Postdoctoral Science Foundation(No.2019M661833).
文摘A novel co-rotating electrochemical machining method is proposed for fabricating convex structures on the inner surface of a revolving part.The electrodes motion and material removal method of co-rotating electrochemical machining are different from traditional electrochemical machining.An equivalent kinematic model is established to analyze the novel electrodes motion,since the anode and cathode rotate in the same direction while the cathode simultaneously feeds along the line of centres.According to the kinematic equations of the electrodes and Faraday’s law,a material removal model is established to simulate the evolution of the anode profile in co-rotating electrochemical machining.The simulation results indicate that the machining accuracy of the convex structure is strongly affected by the angular velocity ratio and the radius of the cathode tool.An increase of the angular velocity ratio can improve the machining accuracy of a convex structure.A small difference in the radius of the cathode tool will cause changes in the shape of the sidewalls of the convex structure.The width of the cathode window affects only the width of the convex structure and the inclination a of the sidewall.A relation between the width of the cathode window and the width of the convex structure was obtained.The formation process for a convex structure under electrochemical dissolution was revealed.Based on the simulation results,the optimal angular velocity ratio and cathode radius were selected for an experimental verification,and 12 convex structures were simultaneously fabricated on the inner surface of a thin-walled revolving part.The experimental results are in good agreement with the simulation results,which verifies the correctness of the theoretical analysis.Therefore,inner surface co-rotating electrochemical machining is an effective method for fabricating convex structures on the inner surface of a revolving part.
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
文摘In this article,the phenomenon of“information space”and its methods of study,its types,elementary structure and qualitative characteristics are discussed,the author’s definition of the concept of“information”is given,the structure of the information process,and the phases,which are the basis for the evolution of the information space and the universe of human activity,are considered.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
文摘The syntheses and structures of trinuclear Mo (W)-Fe-S cluster[MFe2S2(CO)8 (S,CNSEt2)]- (M=Mo, W), hexanuclear Fe-S cluster [Fe6S6-(CO)12]2- and undecanuclear Cu-Fe-S cluster [Cu5Fe6S6(CO)18(PPh3)2]-, containingFe2S2(CO)6-units bave been summarized and the important vestiges left in their struc-tures reflecting the formation processes of the clusters have been found and discussed.Further inspecting some other typical clusters a regular unit construction in the forma-tion of the metal cluster compounds containing Fe2S2(CO)6-units has been figured outand applied to speculate and predict several new cluster compounds containing Fe2S2(CO)6-units.
文摘Along with the explosive increase of product data management systems (PDMs),integrating polymorphic PDMs is becoming one of the focuses in the field. Aner brief describing several features of PDM, and market requirements and required performance for integrating the polymorphic PDMs, the paper specializes in discussing some key technologies involved in virtual enterprise oriented integrated development. Some implementing strategies and procedures are proposed.
基金supported by the National Natural Science Foundation of China (No.50978014)the Fundamental Research Funds for the Central Universities (No.2011JBM077)
文摘A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.
文摘Based on the three-term decomposition model for turbulent flows, the fundamental equations for quasi-periodic motions are obtained, and the approximate analytical solutions of these second-order nonlinear partial differential equations are derived by using the match method. The effects on the mo- mentum, heat and mass transport processes in the wall turbulent flows can be estimated approximately.