Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu...Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.展开更多
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat...The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t...The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.展开更多
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc...In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.展开更多
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ...Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.展开更多
Equity structure constitutes a crucial component of corporate internal governance.A scientifically and reasonably structured equity system aids in enhancing the level and efficiency of corporate governance.Through emp...Equity structure constitutes a crucial component of corporate internal governance.A scientifically and reasonably structured equity system aids in enhancing the level and efficiency of corporate governance.Through empirical analysis of data spanning from 2013 to 2022,the study aims to verify the influence mechanism of equity structure on corporate performance.The results indicate that enhancing equity concentration and balance positively impacts corporate performance,with this effect persisting over time.Consequently,optimizing the degree of equity concentration,shareholder types,and the board of directors’structure can assist enterprises in maximizing long-term value.展开更多
Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while...Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.展开更多
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ...In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.展开更多
Objective To explore the relationship of market structure,efficiency and performance of Chinese traditional patent medicine(CTPM)industry,and to provide suggestions for the government and related enterprises to take t...Objective To explore the relationship of market structure,efficiency and performance of Chinese traditional patent medicine(CTPM)industry,and to provide suggestions for the government and related enterprises to take the corresponding strategies.Methods Econometric model were empirically analyzed about 44 ongoing sample enterprises from 2007 to 2017,based on market power hypothesis and efficiency structure hypothesis of the industrial organization theory.Results and Conclusion The CTPM industry and the unlisted enterprises only conform to the relative market power hypothesis,and there is a significant positive correlation between performance and market share.The listed enterprises do not conform to the market power hypothesis and efficiency structure hypothesis:There is no significant correlation between performance and efficiency,market structure.There is no significant correlation between market share and efficiencies,while the industrial concentration has a significant correlation with efficiencies.The CTPM industry is relatively immature,so it’s necessary for the government to establish the elimination mechanism of CTPM industry in line with market rules,to enhance the industrial concentration and resource utilization efficiency by encouraging enterprises to improve management and scale production level.The government should improve the innovation policy of CTPM industry to encourage the enterprises to pursue product innovation.The CTPM enterprises,especially the unlisted enterprises should increase the market shares and enterprise performance through production differentiation.展开更多
Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as temp...Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.展开更多
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-his...Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response.展开更多
The spinel lithium manganese oxide cathode materials were prepared by adipic acid-assisted sol-gel method at 350~900 ℃ in air. The effects of water content of solution, molar ratio between metal ion and adipic acid,...The spinel lithium manganese oxide cathode materials were prepared by adipic acid-assisted sol-gel method at 350~900 ℃ in air. The effects of water content of solution, molar ratio between metal ion and adipic acid, cooling rate, synthesis temperature and particle sizes on structure and electrochemical performance of LiMn_2O_4 are investigated by X-ray diffraction (XRD), and cyclic voltammetry (CV). The result shows that the structure and electrochemical performance of LiMn_2O_4 are greatly affected by synthesis condition, and the optimal synthesis condition is determined. Charge-discharge test reveals that the particle size and cooling rate have significant effects on the electrochemical performance of LiMn_2O_4 cathode materials.展开更多
The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to th...The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.展开更多
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t...C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.展开更多
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a...A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.展开更多
Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of ...Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of the deposit increased, whereas the cobalt and phosphorus contents decreased. The structure of the deposit was investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM). The deposit consisted of hexahedron phase Co, cubic phase Fe-Co, and amorphous phase (crystalline). The magnetic performances of the deposit were studied using vibrating sample magnetometer (VSM). The more the content of Fe and the less the content of P (the content of Co being less), the better the magnetic performances of the deposit. The Co-Fe-P deposit was suitable for use as soft magnetic material.展开更多
Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties.Herein,halogen anion(X-)-incorporated β-FeOOH(β-FeOOH(X),X=F-,Cl-,and Br...Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties.Herein,halogen anion(X-)-incorporated β-FeOOH(β-FeOOH(X),X=F-,Cl-,and Br-) was investigated with a spontaneous adsorption process,which realized a great improvement of supercapacitor performances by adjusting the coordination geometry.Experiments coupled with theoretical calculations demonstrated that the change of Fe-O bond length and structural distortion of β-FeOOH,which is rooted in halogen ions embedment,led to the relatively narrow band gap.Because of the strong electronegativity of X-,the Fe element in β-FeOOH(X)s presented the unexpected high valence state(3+δ),which is facilitating to adsorb S032-species.Consequently,the designed β-FeOOH(X)s exhibited the good electric conductivity and enhanced the contact between electrode and electrolyte.When used as a negative electrode,the β-FeOOH(F) showed the excellent specific capacity of 391.9 F g-1 at 1 A g-1 current density,almost tenfold improvement compared with initial β-FeOOH,with the superior rate capacity and cyclic stability.This combinational design principle of electronic structure and electrochemical performances provides a promising way to develop advanced electrode materials for supercapacitor.展开更多
Silicon suboxide(SiO_(x),0<x<2)is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries(LIBs)due to its high theoretical specific capacity and abundant resource.H...Silicon suboxide(SiO_(x),0<x<2)is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries(LIBs)due to its high theoretical specific capacity and abundant resource.However,the severe mechanical instability arising from large volume variation upon charge/discharge cycles frustrates its electrochemical performance.Here we propose a well-designed sandwich-like structure with sandwiched SiO_(x) nanoparticles between graphene sheets and amorphous carbon-coating layer so as to improve the structural stability of SiO_(x) anode materials during cycling.Graphene sheets and carbon layer together construct a three-dimensional conductive network around SiO_(x) particles,which not only improves the electrode reactions kinetics,but also homogenizes local current density and thus volume variation on SiO_(x) surface.Moreover,Si-O-C bonds between SiO_(x) and graphene endow the strong particle adhesion on graphene sheets,which prevents SiO_(x) peeling from graphene sheets.Owing to the synergetic effects of the structural advantages,the C/SiO_(x)@graphene material exhib-its an excellent cyclic performance such as 890 mAh/g at 0.1 C rate and 73.7%capacity retention after 100 cycles.In addition,it also delivers superior rate capability with a capacity recovery of 886 mAh/g(93.7%recovery rate)after 35 cycles of ascending steps at current range of 0.1-5 C and finally back to 0.1 C.This study provides a novel strategy to improve the structural stability of high-capacity anode materials for lithium/sodium ion batteries.展开更多
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectr...Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.展开更多
基金Guangzhou Key R&D Program/Plan Unveiled Flagship Project,Grant/Award Number:20220602JBGS02Guangzhou Basic and Applied Basic Research Project,Grant/Award Number:202201011449+3 种基金Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology,Grant/Award Numbers:FC202220,FC202216Guangdong Basic and Applied Basic Research Foundation,Grant/Award Numbers:2021A1515010167,2022A1515011196National Natural Science Foundation of China,Grant/Award Numbers:21975292,21978331,22068008,52101186Training Program of the Major Research Plan of the National Natural Science Foundation of China,Grant/Award Number:92061124。
文摘Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions.
基金financially supported by the National Natural Science Foundation of China (Grant No. 22275173)the Open Project of State Key Laboratory of Environment-friendly Energy Materials (Grant No. 22kfhg10)。
文摘The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金supported by the National Natural Science Foundation of China(Grant Nos.42027806 and 42041006)。
文摘The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow.
基金supported by the Defense Industrial Technology Development Program(Grant No.JCKY2018604B004)the National Natural Science Foundation of China(Grant No.11972007)。
文摘In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances.
基金supported by the National Natural Science Foundation of China(No.52079133)CRSRI Open Research Program(Program SN:CKWV2019746/KY)+1 种基金the project of Key Laboratory of Water Grid Project and Regulation of Ministry of Water Resources(QTKS0034W23291)the Youth Innovation Promotion Association CAS.
文摘Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m.
文摘Equity structure constitutes a crucial component of corporate internal governance.A scientifically and reasonably structured equity system aids in enhancing the level and efficiency of corporate governance.Through empirical analysis of data spanning from 2013 to 2022,the study aims to verify the influence mechanism of equity structure on corporate performance.The results indicate that enhancing equity concentration and balance positively impacts corporate performance,with this effect persisting over time.Consequently,optimizing the degree of equity concentration,shareholder types,and the board of directors’structure can assist enterprises in maximizing long-term value.
基金supported by Zhejiang Normal University (YS304320035, YS304320036)
文摘Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided.
基金Projects(51161015,51371094) supported by the National Natural Science Foundation of China
文摘In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising.
文摘Objective To explore the relationship of market structure,efficiency and performance of Chinese traditional patent medicine(CTPM)industry,and to provide suggestions for the government and related enterprises to take the corresponding strategies.Methods Econometric model were empirically analyzed about 44 ongoing sample enterprises from 2007 to 2017,based on market power hypothesis and efficiency structure hypothesis of the industrial organization theory.Results and Conclusion The CTPM industry and the unlisted enterprises only conform to the relative market power hypothesis,and there is a significant positive correlation between performance and market share.The listed enterprises do not conform to the market power hypothesis and efficiency structure hypothesis:There is no significant correlation between performance and efficiency,market structure.There is no significant correlation between market share and efficiencies,while the industrial concentration has a significant correlation with efficiencies.The CTPM industry is relatively immature,so it’s necessary for the government to establish the elimination mechanism of CTPM industry in line with market rules,to enhance the industrial concentration and resource utilization efficiency by encouraging enterprises to improve management and scale production level.The government should improve the innovation policy of CTPM industry to encourage the enterprises to pursue product innovation.The CTPM enterprises,especially the unlisted enterprises should increase the market shares and enterprise performance through production differentiation.
文摘Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.
基金International Institute of Earthquake Engineering and Seismology(IIEES)under the research project No.7143
文摘Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response.
文摘The spinel lithium manganese oxide cathode materials were prepared by adipic acid-assisted sol-gel method at 350~900 ℃ in air. The effects of water content of solution, molar ratio between metal ion and adipic acid, cooling rate, synthesis temperature and particle sizes on structure and electrochemical performance of LiMn_2O_4 are investigated by X-ray diffraction (XRD), and cyclic voltammetry (CV). The result shows that the structure and electrochemical performance of LiMn_2O_4 are greatly affected by synthesis condition, and the optimal synthesis condition is determined. Charge-discharge test reveals that the particle size and cooling rate have significant effects on the electrochemical performance of LiMn_2O_4 cathode materials.
基金the Western Region Traffic Construction Technology Program of the Ministry of Communications of China(No.2007-088)
文摘The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.
文摘C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels.
基金Supported by National Science and Technology Major Project(Grant No.2015ZX04014021)
文摘A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method.
基金Acknowledgements-This work was supported by the Fujian Provincial Natural Science Foundation of China (No. E0210020).
文摘Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of the deposit increased, whereas the cobalt and phosphorus contents decreased. The structure of the deposit was investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM). The deposit consisted of hexahedron phase Co, cubic phase Fe-Co, and amorphous phase (crystalline). The magnetic performances of the deposit were studied using vibrating sample magnetometer (VSM). The more the content of Fe and the less the content of P (the content of Co being less), the better the magnetic performances of the deposit. The Co-Fe-P deposit was suitable for use as soft magnetic material.
基金supported by the National Natural Science Foundation of China(Nos.2177060378,21627813,and 21521005)the Program for Changjiang Scholars,Innovative Research Teams in Universities(No.IRT1205)the Fundamental Research Funds for the Central Universities(Nos.12060093063 and XK1803-05).
文摘Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties.Herein,halogen anion(X-)-incorporated β-FeOOH(β-FeOOH(X),X=F-,Cl-,and Br-) was investigated with a spontaneous adsorption process,which realized a great improvement of supercapacitor performances by adjusting the coordination geometry.Experiments coupled with theoretical calculations demonstrated that the change of Fe-O bond length and structural distortion of β-FeOOH,which is rooted in halogen ions embedment,led to the relatively narrow band gap.Because of the strong electronegativity of X-,the Fe element in β-FeOOH(X)s presented the unexpected high valence state(3+δ),which is facilitating to adsorb S032-species.Consequently,the designed β-FeOOH(X)s exhibited the good electric conductivity and enhanced the contact between electrode and electrolyte.When used as a negative electrode,the β-FeOOH(F) showed the excellent specific capacity of 391.9 F g-1 at 1 A g-1 current density,almost tenfold improvement compared with initial β-FeOOH,with the superior rate capacity and cyclic stability.This combinational design principle of electronic structure and electrochemical performances provides a promising way to develop advanced electrode materials for supercapacitor.
基金financially supported by the National Natural Science Foundation of China (Nos. 52102205 and U1637202)the Fundamental Research Funds for the Central Universities (No. FRF-TP-20-048A1)
文摘Silicon suboxide(SiO_(x),0<x<2)is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries(LIBs)due to its high theoretical specific capacity and abundant resource.However,the severe mechanical instability arising from large volume variation upon charge/discharge cycles frustrates its electrochemical performance.Here we propose a well-designed sandwich-like structure with sandwiched SiO_(x) nanoparticles between graphene sheets and amorphous carbon-coating layer so as to improve the structural stability of SiO_(x) anode materials during cycling.Graphene sheets and carbon layer together construct a three-dimensional conductive network around SiO_(x) particles,which not only improves the electrode reactions kinetics,but also homogenizes local current density and thus volume variation on SiO_(x) surface.Moreover,Si-O-C bonds between SiO_(x) and graphene endow the strong particle adhesion on graphene sheets,which prevents SiO_(x) peeling from graphene sheets.Owing to the synergetic effects of the structural advantages,the C/SiO_(x)@graphene material exhib-its an excellent cyclic performance such as 890 mAh/g at 0.1 C rate and 73.7%capacity retention after 100 cycles.In addition,it also delivers superior rate capability with a capacity recovery of 886 mAh/g(93.7%recovery rate)after 35 cycles of ascending steps at current range of 0.1-5 C and finally back to 0.1 C.This study provides a novel strategy to improve the structural stability of high-capacity anode materials for lithium/sodium ion batteries.
文摘Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.