期刊文献+
共找到21,595篇文章
< 1 2 250 >
每页显示 20 50 100
Design strategies and structure‐performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3‐butadiene 被引量:1
1
作者 Mengru Wang Yi Wang +2 位作者 Xiaoling Mou Ronghe Lin Yunjie Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第4期1017-1041,共25页
Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while... Selective hydrogenation of 1,3‐butadiene is an essential process in the upgrading of the crude C4 cut from the petroleum chemical sector.Catalyst design is crucial to achieve a virtually alkadiene‐free product while avoiding over‐hydrogenating valuable olefins.In addition to the great industrial relevance,this demanding selectivity pattern renders 1,3‐butadiene hydrogenation a widely used model reaction to discriminate selective hydrogenation catalysts in academia.Nonetheless,critical reviews on the catalyst development are extremely lacking in literature.In this review,we aim to provide the reader an in‐depth overview of different catalyst families,particularly the precious metal‐based monometallic catalysts(Pd,Pt,and Au),developed in the last half century.The emphasis is placed on the development of new strategies to design high‐performance architectures,the establishment of structure‐performance relationships,and the reaction and deactivation mechanisms.Thrilling directions for future optimization of catalyst formulations and engineering aspect are also provided. 展开更多
关键词 1 3‐Butadiene Catalyst design Selective hydrogenation structure‐performance relationship Reaction and deactivation mechanism
下载PDF
Structure–performance relationship of Au nanoclusters in electrocatalysis:Metal core and ligand structure
2
作者 Bowen Li Lianmei Kang +3 位作者 Yongfeng Lun Jinli Yu Shuqin Song Yi Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期63-89,共27页
Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclu... Remarkable progress has characterized the field of electrocatalysis in recent decades,driven in part by an enhanced comprehension of catalyst structures and mechanisms at the nanoscale.Atomically precise metal nanoclusters,serving as exemplary models,significantly expand the range of accessible structures through diverse cores and ligands,creating an exceptional platform for the investigation of catalytic reactions.Notably,ligand‐protected Au nanoclusters(NCs)with precisely defined core numbers offer a distinct advantage in elucidating the correlation between their specific structures and the reaction mechanisms in electrocatalysis.The strategic modulation of the fine microstructures of Au NCs presents crucial opportunities for tailoring their electrocatalytic performance across various reactions.This review delves into the profound structural effects of Au NC cores and ligands in electrocatalysis,elucidating their underlying mechanisms.A detailed exploration of the fundamentals of Au NCs,considering core and ligand structures,follows.Subsequently,the interaction between the core and ligand structures of Au NCs and their impact on electrocatalytic performance in diverse reactions are examined.Concluding the discourse,challenges and personal prospects are presented to guide the rational design of efficient electrocatalysts and advance electrocatalytic reactions. 展开更多
关键词 Au nanoclusters CORE electrocatalytic performance LIGAND structureS
下载PDF
Construction of core@double-shell structured energetic composites with simultaneously enhanced thermal stability and safety performance
3
作者 Peng Wang Wen Qian +6 位作者 Ruolei Zhong Fangfang He Xin Li Jie Chen Li Meng Yinshuang Sun Guansong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期134-142,共9页
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat... The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials. 展开更多
关键词 CL-20 Double-shell structure Thermal stability Safety performance Tannic acid Graphene sheets
下载PDF
Design,preparation,application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries
4
作者 Nanping Deng Xiaofan Feng +7 位作者 Yongbing Jin Zhaozhao Peng Yang Feng Ying Tian Yong Liu Lu Gao Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期266-303,I0007,共39页
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme... Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB. 展开更多
关键词 Array structured materials Preparation methods and structural designs Action mechanism analyses Advanced Li-S batteries Excellent electrochemical performances and safety
下载PDF
Regulation effect of the grille spacing of a funnel-type grating water–sediment separation structure on the debris flow performance
5
作者 LI Shuai GU Tianfeng +2 位作者 WANG Jiading WANG Fei LI Pu 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2283-2304,共22页
The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve t... The size of pores or the grille spacing of water–sediment separation structures directly affects their regulation effect on the debris flow performance.A suitable pore size or grille spacing can effectively improve the water–sediment separation ability of the structure.The new funnel-type grating water–sediment separation structure(FGWSS)combines vertical and horizontal structures and provides a satisfactory water–sediment separation effect.However,the regulation effect of the grille spacing of the structure on the debris flow performance has not been studied.The regulation effect of the structure grille spacing on the debris flow performance is studied through a flume test,and the optimal structure grille spacing is obtained.An empirical equation of the relationship between the relative grille spacing of the structure and the sediment separation rate is established.Finally,the influence of the water–sediment separation structure on the regulation effect of debris flows is examined from two aspects:external factors(properties of debris flows)and internal factors(structural factors).The experimental results show that the gradation characteristics of solid particles in debris flows constitute a key factor affecting the regulation effect of the structure on the debris flow performance.The optimum grille spacing of the FGWSS matches the particle size corresponding to the material distribution curves d85~d90 of the debris flow.The total separation rate of debris flow particles is related to the grille spacing of the structure and the content of coarse and fine particles in the debris flow. 展开更多
关键词 Debris flow Water–sediment separation structure Grille spacing performance regulation effect
下载PDF
Ballistic performances of the hourglass lattice sandwich structures under high-velocity fragments
6
作者 He-xiang Wu Jia Qu Lin-zhi Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期312-325,共14页
In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to eluc... In this paper,the numerical simulation method is used to study the ballistic performances of hourglass lattice sandwich structures with the same mass under the vertical incidence of fragments.Attention is paid to elucidating the influences of rod cross-section dimensions,structure height,structure layer,and rod inclination angle on the deformation mode,ballistic performances,and ability to change the ballistic direction of fragments.The results show that the ballistic performances of hourglass lattice sandwich structures are mainly affected by their structural parameters.In this respect,structural parameters optimization of the hourglass lattice sandwich structures enable one to effectively improve their ballistic limit velocity and,consequently,ballistic performances. 展开更多
关键词 Hourglass lattice sandwich structures Ballistic performances high-velocity Finite element analysis
下载PDF
Aseismic performances of constrained damping lining structures made of rubber-sand-concrete
7
作者 Xiancheng Mei Qian Sheng +4 位作者 Jian Chen Zhen Cui Jianhe Li Chuanqi Li Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1522-1537,共16页
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ... Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m. 展开更多
关键词 Constrained damping structure Aseismic performance Hammer impact tests Damping layer Peak ground acceleration Overburden depth
下载PDF
Research on the Influence of Equity Structure on Corporate Performance
8
作者 Limei Fu 《Proceedings of Business and Economic Studies》 2024年第1期127-132,共6页
Equity structure constitutes a crucial component of corporate internal governance.A scientifically and reasonably structured equity system aids in enhancing the level and efficiency of corporate governance.Through emp... Equity structure constitutes a crucial component of corporate internal governance.A scientifically and reasonably structured equity system aids in enhancing the level and efficiency of corporate governance.Through empirical analysis of data spanning from 2013 to 2022,the study aims to verify the influence mechanism of equity structure on corporate performance.The results indicate that enhancing equity concentration and balance positively impacts corporate performance,with this effect persisting over time.Consequently,optimizing the degree of equity concentration,shareholder types,and the board of directors’structure can assist enterprises in maximizing long-term value. 展开更多
关键词 Equity structure Corporate performance Corporate governance
下载PDF
Effects of stoichiometric ratio La/Mg on structures and electrochemical performances of as-cast and annealed La-Mg-Ni-based A_2B_7-type electrode alloys 被引量:3
9
作者 张羊换 杨泰 +3 位作者 翟亭亭 袁泽明 张国芳 郭世海 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1968-1977,共10页
In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type ... In order to investigate the influences of the stoichiometric ratio of La/Mg (increasing La and decreasing Mg on the same mole ratio) on the structure and electrochemical performances of the La-Mg-Ni-based A2B7-type electrode alloy, the as-cast and the annealed ternary Lao.8+xMgo.2_xNi3.5 (x=0-0.05) electrode alloys were prepared. The characterization of electrode alloys by X-ray diffraction (XRD) and scanning electron microscopy (SEM) shows that all the as-cast and the annealed alloys hold two major phases of (La,Mg)2Ni7 and LaNi5 as well as a residual phase of LaNi3. Moreover, the increase of La/Mg ratio brings on a decline of (La,Mg)2Ni7 phase and a rise of LaNi5 and LaNi3 phases. The variation of La/Mg ratio gives rise to an evident change of the electrochemical performances of the alloys. The discharge capacities of the as-cast and the annealed alloys evidently decrease with growing the La/Mg ratio, while the cycle stabilities of the alloys visibly augment under the same condition. Furthermore, the high rate discharge ability (HRD), the electrochemical impedance spectrum (EIS), the Tafel polarization curves, and the potential step measurements all indicate that the electrochemical kinetic properties of the alloy electrodes increase with the La/Mg ratio rising. 展开更多
关键词 hydrogen storage alloy annealing treatment structure electrochemical performance KINETICS
下载PDF
An Empirical Research on the Relationship of Market Structure,Efficiency and Performance of Chinese Traditional Patent Medicine Industry
10
作者 Gao Yongbo Cao Linlin +1 位作者 Xiao Yao Sun Lihua 《Asian Journal of Social Pharmacy》 2019年第4期155-164,共10页
Objective To explore the relationship of market structure,efficiency and performance of Chinese traditional patent medicine(CTPM)industry,and to provide suggestions for the government and related enterprises to take t... Objective To explore the relationship of market structure,efficiency and performance of Chinese traditional patent medicine(CTPM)industry,and to provide suggestions for the government and related enterprises to take the corresponding strategies.Methods Econometric model were empirically analyzed about 44 ongoing sample enterprises from 2007 to 2017,based on market power hypothesis and efficiency structure hypothesis of the industrial organization theory.Results and Conclusion The CTPM industry and the unlisted enterprises only conform to the relative market power hypothesis,and there is a significant positive correlation between performance and market share.The listed enterprises do not conform to the market power hypothesis and efficiency structure hypothesis:There is no significant correlation between performance and efficiency,market structure.There is no significant correlation between market share and efficiencies,while the industrial concentration has a significant correlation with efficiencies.The CTPM industry is relatively immature,so it’s necessary for the government to establish the elimination mechanism of CTPM industry in line with market rules,to enhance the industrial concentration and resource utilization efficiency by encouraging enterprises to improve management and scale production level.The government should improve the innovation policy of CTPM industry to encourage the enterprises to pursue product innovation.The CTPM enterprises,especially the unlisted enterprises should increase the market shares and enterprise performance through production differentiation. 展开更多
关键词 CTPM INDUSTRY MARKET structure EFFICIENCY performance
下载PDF
A New Technology to Measure the Thermoelectric Performance of Nanowire Array Structure 被引量:1
11
作者 王为 王惠 高建平 《Transactions of Tianjin University》 EI CAS 2002年第4期243-245,共3页
Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as temp... Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established. 展开更多
关键词 measuring technology thermoelectric performance nanowire array structure thermoelectric materials
全文增补中
Seismic evaluation of rocking structures through performance assessment and fragility analysis 被引量:4
12
作者 Mohammad G. Vetr Abolfazl Riahi Nouri Afshin Kalantari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期115-127,共13页
Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-his... Numerical studies have been conducted for low- and medium-rise rocking structures to investigate their efficiency as earthquake-resisting systems in comparison with conventional structures. Several non-linear time-history analyses have been performed to evaluate seismic performance of selected cases at desired ground shaking levels, based on key parameters such as total and flexural story drifts and residual deformations. The Far-field record set is selected as input ground motions and median peak values of key parameters are taken as best estimates of system response. In addition, in order to evaluate the probability of exceeding relevant damage states, analytical fragility curves have been developed based on the results of the incremental dynamic analysis procedure. Small exceedance probabilities and acceptable margins against collapse, together with minor associated damages in main structural members, can be considered as superior seismic performance for medium-rise rocking systems. Low-rise rocking systems could provide significant performance improvement over their conventional counterparts notwithstanding certain weaknesses in their seismic response. 展开更多
关键词 rocking structures conventional structures seismic performance fragility curves
下载PDF
Effects of Different Synthetic Parameters on Structure and Performance of LiMn_2O_4 by Adipic Acid-Assisted Sol-Gel Method 被引量:4
13
作者 伊廷锋 王殿龙 +1 位作者 高昆 胡信国 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期209-213,共5页
The spinel lithium manganese oxide cathode materials were prepared by adipic acid-assisted sol-gel method at 350~900 ℃ in air. The effects of water content of solution, molar ratio between metal ion and adipic acid,... The spinel lithium manganese oxide cathode materials were prepared by adipic acid-assisted sol-gel method at 350~900 ℃ in air. The effects of water content of solution, molar ratio between metal ion and adipic acid, cooling rate, synthesis temperature and particle sizes on structure and electrochemical performance of LiMn_2O_4 are investigated by X-ray diffraction (XRD), and cyclic voltammetry (CV). The result shows that the structure and electrochemical performance of LiMn_2O_4 are greatly affected by synthesis condition, and the optimal synthesis condition is determined. Charge-discharge test reveals that the particle size and cooling rate have significant effects on the electrochemical performance of LiMn_2O_4 cathode materials. 展开更多
关键词 lithium ion battery SOL-GEL LiMn_2O_4 structure electrochemical performance
下载PDF
Effect of Molecular Structure on the Performance of Polyacrylic Acid Superplasticizer 被引量:3
14
作者 张荣国 雷家珩 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期245-249,共5页
The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to th... The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers. 展开更多
关键词 polyacrylic acid superplasticizer cement concrete structure and performance anion surface-active agent molecule structural design
下载PDF
New development in Fe/Co catalysts:Structure modulation and performance optimization for syngas conversion 被引量:4
15
作者 Yinwen Li Xin Zhang Min Wei 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第8期1329-1346,共18页
C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is t... C1 chemistry is the essence of coal chemistry and natural gas chemistry. Catalytic methods to efficiently convert C1 molecules into fuels and chemicals have been extensively studied. Syngas(CO +H_2) conversion is the most important industrial reaction system in C1 chemistry, and Fe and Co catalysts, two major industrial catalysts, have been the focus of fundamental research and industrial application. In the last decade, considerable research efforts have been devoted to discoveries concerning catalyst structure and increasing market demands for olefins and oxygenates. Since the development of efficient catalysts would strongly benefit from catalyst design and the establishment of a new reaction system, this review comprehensively overviews syngas conversion in three main reactions, highlights the advances recently made and the challenges that remain open, and will stimulate future research activities. The first part of the review summarizes the breakthroughs in Fischer-Tropsch synthesis regarding the optimization of activity and stability, determination of the active phase, and mechanistic studies. The second part overviews the modulation of catalytic structure and product selectivity for Fischer-Tropsch to olefins(FTO). Catalysts designed to produce higher alcohols, as well as to tune product selectivity in C1 chemistry, are described in the third section. Finally, present challenges in syngas conversion are proposed, and the solutions and prospects are discussed from the viewpoint of fundamental research and practical application. This review summarizes the latest advances in the design, preparation, and application of Fe/Co-based catalysts toward syngas conversion and presents the challenges and future directions in producing value-added fuels. 展开更多
关键词 Syngas conversion Fe/Cocatalyst structure modulation performance optimization Product selectivity
下载PDF
The Principle of Introducing Halogen Ions Into β-FeOOH: Controlling Electronic Structure and Electrochemical Performance 被引量:4
16
作者 Dongbin Zhang Xuzhao Han +2 位作者 Xianggui Kong Fazhi Zhang Xiaodong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期1-13,共13页
Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties.Herein,halogen anion(X-)-incorporated β-FeOOH(β-FeOOH(X),X=F-,Cl-,and Br... Coordination tuning electronic structure of host materials is a quite effective strategy for activating and improving the intrinsic properties.Herein,halogen anion(X-)-incorporated β-FeOOH(β-FeOOH(X),X=F-,Cl-,and Br-) was investigated with a spontaneous adsorption process,which realized a great improvement of supercapacitor performances by adjusting the coordination geometry.Experiments coupled with theoretical calculations demonstrated that the change of Fe-O bond length and structural distortion of β-FeOOH,which is rooted in halogen ions embedment,led to the relatively narrow band gap.Because of the strong electronegativity of X-,the Fe element in β-FeOOH(X)s presented the unexpected high valence state(3+δ),which is facilitating to adsorb S032-species.Consequently,the designed β-FeOOH(X)s exhibited the good electric conductivity and enhanced the contact between electrode and electrolyte.When used as a negative electrode,the β-FeOOH(F) showed the excellent specific capacity of 391.9 F g-1 at 1 A g-1 current density,almost tenfold improvement compared with initial β-FeOOH,with the superior rate capacity and cyclic stability.This combinational design principle of electronic structure and electrochemical performances provides a promising way to develop advanced electrode materials for supercapacitor. 展开更多
关键词 β-FeOOH Halogen ion embedment Tuning electronic structure Supercapacitor performance
下载PDF
Light-Weight Design Method for Force-Performance-Structure of Complex Structural Part Based Co-operative Optimization 被引量:3
17
作者 Ya-Li Ma Jian-Rong Tan +1 位作者 De-Lun Wang Zi-Zhe Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期115-123,共9页
A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a... A light?weight design method of integrated structural topology and size co?optimization for the force?performance?structure of complex structural parts is presented in this paper. Firstly, the supporting function of a complex structural part is built to map the force transmission, where the force exerted areas and constraints are considered as connecting structure and the structural configuration, to determine the part performance as well as the force routines. Then the connecting structure design model, aiming to optimize the static and dynamic performances on connection configuration, is developed, and the optimum design of the characteristic parameters is carried out by means of the collaborative optimization method, namely, the integrated structural topology optimization and size optimization. In this design model, the objective is to maximize the connecting stiffness. Based on the relationship between the force and the structural configuration of a part, the optimal force transmission routine that can meet the performance requirements is obtained using the structural topology optimization technology. Accordingly, the light?weight design of conceptual configuration for complex parts under multi?objective and multi?condition can be realized. Finally, based on the proposed collaborative optimization design method, the optimal performance and optimal structure of the complex parts with light weight are realized, and the reasonable structural unit configuration and size charac?teristic parameters are obtained. A bed structure of gantry?type machining center is designed by using the proposed light?weight structure design method in this paper, as an illustrative example. The bed after the design optimization is lighter 8% than original one, and the rail deformation is reduced by 5%. Moreover, the lightweight design of the bed is achieved with enhanced performance to show the effectiveness of the proposed method. 展开更多
关键词 Light?weight design Part structure Topology optimization Size optimization FORCE performance
下载PDF
EFFECT OF ELECTROLESS DEPOSITION CONDITIONS ON THE STRUCTURES AND THE MAGNETIC PERFORMANCES OF THE Co-Fe-P ALLOY 被引量:1
18
作者 S.L. Wang F.Q. Zeng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第4期307-312,共6页
Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of ... Electroless Co-Fe-P alloys were deposited from an alkaline bath, containing boric acid as a buffer agent and sodium citrate as a complexing agent. As a result, with the increase of pH of the bath, the iron content of the deposit increased, whereas the cobalt and phosphorus contents decreased. The structure of the deposit was investigated using X-ray diffraction (XRD) and transmission electron microscope (TEM). The deposit consisted of hexahedron phase Co, cubic phase Fe-Co, and amorphous phase (crystalline). The magnetic performances of the deposit were studied using vibrating sample magnetometer (VSM). The more the content of Fe and the less the content of P (the content of Co being less), the better the magnetic performances of the deposit. The Co-Fe-P deposit was suitable for use as soft magnetic material. 展开更多
关键词 electroless deposition Co-Fe-P structure magnetic performance
下载PDF
Sandwich-like structure C/SiO_(x)@graphene anode material with high electrochemical performance for lithium ion batteries 被引量:2
19
作者 Zhaolin Li Yaozong Yang +2 位作者 Jie Wang Zhao Yang Hailei Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第11期1947-1953,共7页
Silicon suboxide(SiO_(x),0<x<2)is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries(LIBs)due to its high theoretical specific capacity and abundant resource.H... Silicon suboxide(SiO_(x),0<x<2)is recognized as one of the next-generation anode materials for high-energy-density lithium ion batteries(LIBs)due to its high theoretical specific capacity and abundant resource.However,the severe mechanical instability arising from large volume variation upon charge/discharge cycles frustrates its electrochemical performance.Here we propose a well-designed sandwich-like structure with sandwiched SiO_(x) nanoparticles between graphene sheets and amorphous carbon-coating layer so as to improve the structural stability of SiO_(x) anode materials during cycling.Graphene sheets and carbon layer together construct a three-dimensional conductive network around SiO_(x) particles,which not only improves the electrode reactions kinetics,but also homogenizes local current density and thus volume variation on SiO_(x) surface.Moreover,Si-O-C bonds between SiO_(x) and graphene endow the strong particle adhesion on graphene sheets,which prevents SiO_(x) peeling from graphene sheets.Owing to the synergetic effects of the structural advantages,the C/SiO_(x)@graphene material exhib-its an excellent cyclic performance such as 890 mAh/g at 0.1 C rate and 73.7%capacity retention after 100 cycles.In addition,it also delivers superior rate capability with a capacity recovery of 886 mAh/g(93.7%recovery rate)after 35 cycles of ascending steps at current range of 0.1-5 C and finally back to 0.1 C.This study provides a novel strategy to improve the structural stability of high-capacity anode materials for lithium/sodium ion batteries. 展开更多
关键词 sandwich-like structure silicon suboxide electrochemical performance anode lithium-ion battery
下载PDF
Structure and Mechanical Performance of Nitrogen Doped Diamond-like Carbon Films 被引量:1
20
作者 Huayu ZHANG Liang-xue LIU +2 位作者 Yulei WANG Hongtao MA Fanxin LIU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第4期491-494,共4页
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectr... Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa. 展开更多
关键词 Nitrogen doped diamond-like carbon films ECR-CVD structure Mechanical performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部