In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preser...In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well.展开更多
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta...The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.展开更多
Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accu...Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the correspondin...The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the corresponding discrete flow is proved to be symplectic. That means the algorithm preserves the symplectic structure of Birkhofflan systems. Finally, simulation results of the given example indicate that structure-preserving algorithms have great advantage in stability and energy conserving.展开更多
In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, b...In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, based on the gradient- Hamiltonian decomposition theory of vector fields, by using splitting methods, this paper constructs structure-preserving algorithms (SPAs) for the Duffing equation. Then, according to the Liouville formula, it proves that the Jacobian matrix determinants of the SPAs are equal to that of the exact flow of the Duffing equation. However, considering the explicit Runge Kutta methods, this paper finds that there is an error term of order p+l for the Jacobian matrix determinants. The volume evolution law of a given region in phase space is discussed for different algorithms, respectively. As a result, the sum of Lyapunov exponents is exactly invariable for the SPAs proposed in this paper. Finally, through numerical experiments, relative norm errors and absolute energy errors of phase trajectories of the SPAs and the Heun method (a second-order Runge-Kutta method) are compared. Computational results illustrate that the SPAs are evidently better than the Heun method when e is small or equal to zero.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)...Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.展开更多
Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin com...Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.展开更多
Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root findi...Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.展开更多
Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formu...Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to ca...Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to carry out direct simulations of multi-scale plasma dynamics based on first-principles. However, standard algorithms currently adopted by the plasma physics community do not possess the long-term accuracy and fidelity required for these large-scale simulations. This is because conventional simulation algorithms are based on numerically solving the underpinning differential (or integro-differential) equations, and the algorithms used in general do not preserve the geometric and physical structures of the systems, such as the local energy-momentum conservation law, the symplectic structure, and the gauge symmetry. As a consequence, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty and to harness the power of exascale computers, a new generation of structure-preserving geometric PIC algorithms have been developed. This new generation of algorithms utilizes modem mathematical techniques, such as discrete manifolds, interpolating differential forms, and non-canonical symplectic integrators, to ensure gauge symmetry, space-time symmetry and the conservation of charge, energy-momentum, and the symplectic structure. These highly desired properties are difficult to achieve using the conventional PIC algorithms. In addition to summarizing the recent development and demonstrating practical implementations, several new results are also presented, including a structure-preserving geometric relativistic PIC algorithm, the proof of the correspondence between discrete gauge symmetry and discrete charge conservation law, and a reformulation of the explicit non-canonical symplectic algorithm for the discrete Poisson bracket using the variational approach. Numerical examples are given to verify the advantages of the structure- preserving geometric PIC algorithms in comparison with the conventional PIC methods.展开更多
A numerical method for the Hamiltonian system is required to preserve some structure-preserving properties. The current structure-preserving method satisfies the requirements that a symplectic method can preserve the ...A numerical method for the Hamiltonian system is required to preserve some structure-preserving properties. The current structure-preserving method satisfies the requirements that a symplectic method can preserve the symplectic structure of a finite dimension Hamiltonian system, and a multi-symplectic method can preserve the multi-symplectic structure of an infinite dimension Hamiltonian system. In this paper, the structure-preserving properties of three differential schemes for an oscillator system are investigated in detail. Both the theoretical results and the numerical results show that the results obtained by the standard forward Euler scheme lost all the three geometric properties of the oscillator system, i.e., periodicity, boundedness, and total energy, the symplectic scheme can preserve the first two geometric properties of the oscillator system, and the St?rmer-Verlet scheme can preserve the three geometric properties of the oscillator system well. In addition, the relative errors for the Hamiltonian function of the symplectic scheme increase with the increase in the step length, suggesting that the symplectic scheme possesses good structure-preserving properties only if the step length is small enough.展开更多
The current structure-preserving theory, including the symplectic method and the multisymplectic method, pays most attention on the conservative properties of the continuous systems because that the conservative prope...The current structure-preserving theory, including the symplectic method and the multisymplectic method, pays most attention on the conservative properties of the continuous systems because that the conservative properties of the conservative systems can be formulated in the mathematical form. But, the nonconservative characteristics are the nature of the systems existing in engineering. In this letter, the structure-preserving approach for the infinite dimensional nonconservative systems is proposed based on the generalized multi-symplectic method to broaden the application fields of the current structure-preserving idea. In the numerical examples,two nonconservative factors, including the strong excitation on the string and the impact on the cantilever, are considered respectively. The vibrations of the string and the cantilever are investigated by the structure-preserving approach and the good long-time numerical behaviors as well as the high numerical precision of which are illustrated by the numerical results presented.展开更多
The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non...The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.展开更多
The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of ...The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structur...The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.展开更多
A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization v...A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.展开更多
基金supported by the National Natural Science Foundation of China(11801277,11771213,12171245)。
文摘In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well.
基金supported by the National Natural Science Foundation of China(Grant Nos.42077232 and 42077235)the Key Research and Development Plan of Jiangsu Province(Grant No.BE2022156).
文摘The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm.
基金supported by the National Natural Science Foundation of China (42122017,41821002)the Hubei Provincial Natural Science Foundation of China (2020CFB501)+1 种基金the Shandong Provincial Key Research and Development Program (2020ZLYS08)the Independent innovation research program of China University of Petroleum (East China) (21CX06001A)。
文摘Tectonism is one of the dominant factors affecting the shale pore structure.However,the control of shale pore structure by tectonic movements is still controversial,which limits the research progress of shale gas accumulation mechanism in the complex tectonic region of southern China.In this study,34 samples were collected from two exploratory wells located in different tectonic locations.Diverse experiments,e.g.,organic geochemistry,XRD analysis,FE-SEM,low-pressure gas adsorption,and high-pressure mercury intrusion,were conducted to fully characterize the shale reservoir.The TOC,Ro,and mineral composition of the shale samples between the two wells are similar,which reflects that the shale samples of the two wells have proximate pores-generating capacity and pores-supporting capacity.However,the pore characteristics of shale samples from two wells are significantly different.Compared with the stabilized zone shale,the porosity,pore volume,and specific surface area of the deformed zone shale were reduced by 60.61%,64.85%,and 27.81%,respectively.Moreover,the macroscopic and fine pores were reduced by 54.01%and 84.95%,respectively.Fault activity and uplift denudation are not conducive to pore preservation,and the rigid basement of Huangling uplift can promote pore preservation.These three factors are important reasons for controlling the difference in pore structure between two wells shales.We established a conceptual model of shale pores evolution under different tectonic preservation conditions.This study is significant to clarify the scale of shale gas formation and enrichment in complex tectonic regions,and helps in the selection of shale sweet spots.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金Supported by the National Natural Science Foundation of China (10932002,10972031)
文摘The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the corresponding discrete flow is proved to be symplectic. That means the algorithm preserves the symplectic structure of Birkhofflan systems. Finally, simulation results of the given example indicate that structure-preserving algorithms have great advantage in stability and energy conserving.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022)
文摘In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, based on the gradient- Hamiltonian decomposition theory of vector fields, by using splitting methods, this paper constructs structure-preserving algorithms (SPAs) for the Duffing equation. Then, according to the Liouville formula, it proves that the Jacobian matrix determinants of the SPAs are equal to that of the exact flow of the Duffing equation. However, considering the explicit Runge Kutta methods, this paper finds that there is an error term of order p+l for the Jacobian matrix determinants. The volume evolution law of a given region in phase space is discussed for different algorithms, respectively. As a result, the sum of Lyapunov exponents is exactly invariable for the SPAs proposed in this paper. Finally, through numerical experiments, relative norm errors and absolute energy errors of phase trajectories of the SPAs and the Heun method (a second-order Runge-Kutta method) are compared. Computational results illustrate that the SPAs are evidently better than the Heun method when e is small or equal to zero.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金supported by the NationalNatural Science Foundation of China(No.11672098).
文摘Shape and size optimization with frequency constraints is a highly nonlinear problem withmixed design variables,non-convex search space,and multiple local optima.Therefore,a hybrid sine cosine firefly algorithm(HSCFA)is proposed to acquire more accurate solutions with less finite element analysis.The full attraction model of firefly algorithm(FA)is analyzed,and the factors that affect its computational efficiency and accuracy are revealed.A modified FA with simplified attraction model and adaptive parameter of sine cosine algorithm(SCA)is proposed to reduce the computational complexity and enhance the convergence rate.Then,the population is classified,and different populations are updated by modified FA and SCA respectively.Besides,the random search strategy based on Lévy flight is adopted to update the stagnant or infeasible solutions to enhance the population diversity.Elitist selection technique is applied to save the promising solutions and further improve the convergence rate.Moreover,the adaptive penalty function is employed to deal with the constraints.Finally,the performance of HSCFA is demonstrated through the numerical examples with nonstructural masses and frequency constraints.The results show that HSCFA is an efficient and competitive tool for shape and size optimization problems with frequency constraints.
基金supported by Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)the National Natural Science Foundation of China(Grant Nos.62104056,62106041,and 62204204)+2 种基金the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001)the Fundamental Research Funds for the Central Universities(Grant No.223202100019).
文摘Epidermal electrophysiological monitoring has garnered significant attention for its potential in medical diagnosis and healthcare,particularly in continuous signal recording.However,simultaneously satisfying skin compliance,mechanical properties,environmental adaptation,and biocompatibility to avoid signal attenuation and motion artifacts is challenging,and accurate physiological feature extraction necessitates effective signal-processing algorithms.This review presents the latest advancements in smart electrodes for epidermal electrophysiological monitoring,focusing on materials,structures,and algorithms.First,smart materials incorporating self-adhesion,self-healing,and self-sensing functions offer promising solutions for long-term monitoring.Second,smart meso-structures,together with micro/nanostructures endowed the electrodes with self-adaption and multifunctionality.Third,intelligent algorithms give smart electrodes a“soul,”facilitating faster and more-accurate identification of required information via automatic processing of collected electrical signals.Finally,the existing challenges and future opportunities for developing smart electrodes are discussed.Recognized as a crucial direction for next-generation epidermal electrodes,intelligence holds the potential for extensive,effective,and transformative applications in the future.
文摘Structural analysis problems can be formulized as either root finding problems,or optimization problems.The general practice is to choose the first option directly or to convert the second option again to a root finding problem by taking relevant derivatives and equating them to zero.The second alternative is used very randomly as it is and only for some simple demonstrative problems,most probably due to difficulty in solving optimization problems by classical methods.The method called TPO/MA(Total Potential Optimization using Metaheuristic Algorithms)described in this study successfully enables to handle structural problems with optimization formulation.Using metaheuristic algorithms provides additional advantages in dealing with all kinds of constraints.
基金supported by the National Natural Science Foundation of China(Grant Nos.11201169 and 61672013)the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems(Grant No.201606)
文摘Local structure-preserving algorithms including multi-symplectic, local energy- and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
基金supported by National Natural Science Foundation of China (NSFC-11775219, 11775222, 11505186, 11575185 and 11575186)the National Key Research and Development Program (2016YFA0400600, 2016YFA0400601 and 2016YFA0400602)+3 种基金the ITER-China Program (2015GB111003, 2014GB124005)Chinese Scholar Council (201506340103)China Postdoctoral Science Foundation (2017LH002)the GeoA lgorithmic Plasma Simulator (GAPS) Project
文摘Recent development of structure-preserving geometric particle-in-cell (PIC) algorithms for Vlasov-Maxwell systems is summarized. With the arrival of 100 petaflop and exaflop computing power, it is now possible to carry out direct simulations of multi-scale plasma dynamics based on first-principles. However, standard algorithms currently adopted by the plasma physics community do not possess the long-term accuracy and fidelity required for these large-scale simulations. This is because conventional simulation algorithms are based on numerically solving the underpinning differential (or integro-differential) equations, and the algorithms used in general do not preserve the geometric and physical structures of the systems, such as the local energy-momentum conservation law, the symplectic structure, and the gauge symmetry. As a consequence, numerical errors accumulate coherently with time and long-term simulation results are not reliable. To overcome this difficulty and to harness the power of exascale computers, a new generation of structure-preserving geometric PIC algorithms have been developed. This new generation of algorithms utilizes modem mathematical techniques, such as discrete manifolds, interpolating differential forms, and non-canonical symplectic integrators, to ensure gauge symmetry, space-time symmetry and the conservation of charge, energy-momentum, and the symplectic structure. These highly desired properties are difficult to achieve using the conventional PIC algorithms. In addition to summarizing the recent development and demonstrating practical implementations, several new results are also presented, including a structure-preserving geometric relativistic PIC algorithm, the proof of the correspondence between discrete gauge symmetry and discrete charge conservation law, and a reformulation of the explicit non-canonical symplectic algorithm for the discrete Poisson bracket using the variational approach. Numerical examples are given to verify the advantages of the structure- preserving geometric PIC algorithms in comparison with the conventional PIC methods.
基金supported by the National Natural Science Foundation of China(Nos.1117223911002115+4 种基金and 11372253)Doctoral Program Foundation of Education Ministry of China(No.20126102110023)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(Nos.GZ0802 and GZ1312)the Special Fund for Basic Scientific Researchof Central CollegesChang’an University(No.CHD2011JC040)
文摘A numerical method for the Hamiltonian system is required to preserve some structure-preserving properties. The current structure-preserving method satisfies the requirements that a symplectic method can preserve the symplectic structure of a finite dimension Hamiltonian system, and a multi-symplectic method can preserve the multi-symplectic structure of an infinite dimension Hamiltonian system. In this paper, the structure-preserving properties of three differential schemes for an oscillator system are investigated in detail. Both the theoretical results and the numerical results show that the results obtained by the standard forward Euler scheme lost all the three geometric properties of the oscillator system, i.e., periodicity, boundedness, and total energy, the symplectic scheme can preserve the first two geometric properties of the oscillator system, and the St?rmer-Verlet scheme can preserve the three geometric properties of the oscillator system well. In addition, the relative errors for the Hamiltonian function of the symplectic scheme increase with the increase in the step length, suggesting that the symplectic scheme possesses good structure-preserving properties only if the step length is small enough.
基金supported by the National Natural Science Foundation of China (Grant 11672241)the Seed Foundation of Qian Xuesen Laboratory of Space Technologythe Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment (Grant GZ1605)
文摘The current structure-preserving theory, including the symplectic method and the multisymplectic method, pays most attention on the conservative properties of the continuous systems because that the conservative properties of the conservative systems can be formulated in the mathematical form. But, the nonconservative characteristics are the nature of the systems existing in engineering. In this letter, the structure-preserving approach for the infinite dimensional nonconservative systems is proposed based on the generalized multi-symplectic method to broaden the application fields of the current structure-preserving idea. In the numerical examples,two nonconservative factors, including the strong excitation on the string and the impact on the cantilever, are considered respectively. The vibrations of the string and the cantilever are investigated by the structure-preserving approach and the good long-time numerical behaviors as well as the high numerical precision of which are illustrated by the numerical results presented.
基金National Natural Science Foundation of China under Grant Nos.51978337 and U2039209。
文摘The number of traditionally excellent coastal lithologic nuclear power plants is limited.It is a trend to develop nuclear power plants on soil sites in inland areas.Therefore,the seismic safety and adaptability of non-rock nuclear power plant(NPP)sites are the key concerns of nuclear safety researchers.Although the five site categories are clearly defined in the AP1000 design control documents,the effects of nuclear power five site conditions and soil nonlinearity on the seismic response characteristics of nuclear island buildings have not been systematically considered in previous related studies.In this study,targeting the AP1000 nuclear island structure as the research object,three-dimensional finite element models of a nuclear island structure at five types of sites(firm rock site(FR),soft rock site(SR),soft-to-medium soil site(SMS),upper bound soft-to-medium site(SMS-UB),and soft soil site(SS))are established.The partitioned analysis method of soil-structure interaction(PASSI)in the time-domain is used to investigate the effects of site hardness and nonlinearity on the acceleration,displacement,and acceleration response spectrum of the nuclear island structure under seismic excitation.The incremental equilibrium equation and explicit decoupling method are used to analyze the soil nonlinearity described by the Davidenkov model with simplified loading-reloading rules.The results show that,in the linear case,with the increase of site hardness,the peak ground acceleration(PGA)and the peak of acceleration response spectrum of the nuclear island structure increase except for the FR site,while the maximum displacement decreases.In nonlinear analysis,as the site hardness increases,the PGA,maximum displacement,and the peak of acceleration response spectrum of the nuclear island structure increase.The peak value of the acceleration response spectrum in the nonlinear case is greater than that in the linear case for FR,while smaller for SR and soil sites.The site nonlinearity reduces the peak values of the response spectrum for SR and soil sites much more as the site hardness decreases.The results of this study can provide a reference for design of nuclear island structures on soil and rock sites.
基金the National Natural Science Foundation of China(51909136)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education,Grant No.2022KDZ21Fund of National Major Water Conservancy Project Construction(0001212022CC60001)。
文摘The staggered distribution of joints and fissures in space constitutes the weak part of any rock mass.The identification of rock mass structural planes and the extraction of characteristic parameters are the basis of rock-mass integrity evaluation,which is very important for analysis of slope stability.The laser scanning technique can be used to acquire the coordinate information pertaining to each point of the structural plane,but large amount of point cloud data,uneven density distribution,and noise point interference make the identification efficiency and accuracy of different types of structural planes limited by point cloud data analysis technology.A new point cloud identification and segmentation algorithm for rock mass structural surfaces is proposed.Based on the distribution states of the original point cloud in different neighborhoods in space,the point clouds are characterized by multi-dimensional eigenvalues and calculated by the robust randomized Hough transform(RRHT).The normal vector difference and the final eigenvalue are proposed for characteristic distinction,and the identification of rock mass structural surfaces is completed through regional growth,which strengthens the difference expression of point clouds.In addition,nearest Voxel downsampling is also introduced in the RRHT calculation,which further reduces the number of sources of neighborhood noises,thereby improving the accuracy and stability of the calculation.The advantages of the method have been verified by laboratory models.The results showed that the proposed method can better achieve the segmentation and statistics of structural planes with interfaces and sharp boundaries.The method works well in the identification of joints,fissures,and other structural planes on Mangshezhai slope in the Three Gorges Reservoir area,China.It can provide a stable and effective technique for the identification and segmentation of rock mass structural planes,which is beneficial in engineering practice.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
基金Supported by the National Natural Science Foundation of China(50378041)the Program for New Century Excellent Talents of Ministry of Educationof China (2004)
文摘The dynamic characteristics of bridge structures, such as the natural frequencies, mode shapes and model damping ratio, are the basis of structural dynamic computation, seismic analysis, vibration control and structural health condition monitoring. In this paper, a three-dimensional finite-element model is established for a highway bridge over a railway on No.312 National Highway and the ambient test is carried out in site, the dynamic characteristics of the bridge are studied using the finite-element analysis and ambient vibration measurements. Comparison between the theoretical and experimental results shows that the frequency differences of the modes range between 0.44% and 8.77%. If the measurement is more reliable, the finite element model updating is necessary. Thus, a set of design variables is selected based on sensitivity analysis, then the finite element model of the bridge is updated based on optimization algorithm. The results of model updating show that the proposed updating method in this paper is more simple and effective, the updated finite element model can reflect the dynamic characteristics of the bridge better, the analytical results can provide the theoretical basis for damage identification and health condition monitoring of the bridge.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50608022)
文摘A multi-objective optimization method based on Pareto Genetic Algorithm is presented for shape design of membrane structures from a structural view point.Several non-dimensional variables are defined as optimization variables,which are decision factors of shapes of membrane structures.Three objectives are proposed including maximization of stiffness,maximum uniformity of stress and minimum reaction under external loads.Pareto Multi-objective Genetic Algorithm is introduced to solve the Pareto solutions.Consequently,the dependence of the optimality upon the optimization variables is derived to provide guidelines on how to determine design parameters.Moreover,several examples illustrate the proposed methods and applications.The study shows that the multi-objective optimization method in this paper is feasible and efficient for membrane structures;the research on Pareto solutions can provide explicit and useful guidelines for shape design of membrane structures.