We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the opt...We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).展开更多
Galaxy morphology classifications based on machine learning are a typical technique to handle enormous amounts of astronomical observation data,but the key challenge is how to provide enough training data for the mach...Galaxy morphology classifications based on machine learning are a typical technique to handle enormous amounts of astronomical observation data,but the key challenge is how to provide enough training data for the machine learning models.Therefore this article proposes an image data augmentation method that combines few-shot learning and generative adversarial networks.The Galaxy10 DECaLs data set is selected for the experiments with consistency,variance,and augmentation effects being evaluated.Three popular networks,including AlexNet,VGG,and ResNet,are used as examples to study the effectiveness of different augmentation methods on galaxy morphology classifications.Experiment results show that the proposed method can generate galaxy images and can be used for expanding the classification model’s training set.According to comparative studies,the best enhancement effect on model performance is obtained by generating a data set that is 0.5–1 time larger than the original data set.Meanwhile,different augmentation strategies have considerably varied effects on different types of galaxies.FSL-GAN achieved the best classification performance on the ResNet network for In-between Round Smooth Galaxies and Unbarred Loose Spiral Galaxies,with F1 Scores of 89.54%and 63.18%,respectively.Experimental comparison reveals that various data augmentation techniques have varied effects on different categories of galaxy morphology and machine learning models.Finally,the best augmentation strategies for each galaxy category are suggested.展开更多
We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation revea...We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation reveals that the warped HⅠdisk of NGC 5055 is more extended than what was previously observed by WSRT,out to239(61.7 kpc).The total HⅠmass of NGC 5055 is determined to be~1.1×10^(10)M_Θ.We identified three HⅠclouds with HⅠmasses of the order of~10^(7)M_Θat the southeastern edge of the HⅠdisk,as well as a candidate high-velocity cloud with an HⅠmass of(1.2±0.5)×10^(6)M_Θto the north of NGC 5055.The HⅠcontent of UGCA337 is robustly detected for the first time by the FAST observations.It has a narrow HⅠlinewidth of W_(50)=17.4±3.8 km s^(-1)with a total HⅠmass of(3.5±0.3)×10^(6)M_Θ.Comparing the gas content and g-r color of UGCA 337 with typical low-mass dwarf galaxies,UGCA 337 appears relatively gas-poor despite its blue color.This suggests that UGCA 337 may have undergone gas stripping in the past.We also analyzed the possible origin of the diffuse HⅠclouds located at the outskirts of NGC 5055,and speculate that they might be the remnant features of a merger event in the past.展开更多
This paper is an initial stage of consideration of the general problem of joint modeling of the vertical structure of a Galactic flat subsystem and the average surface of the disk of the Galaxy,taking into account the...This paper is an initial stage of consideration of the general problem of joint modeling of the vertical structure of a Galactic flat subsystem and the average surface of the disk of the Galaxy,taking into account the natural and measurement dispersions.We approximate the average surface of the Galactic disk in the region covered by the data with a general(polynomial)model and determine its parameters by minimizing the squared deviations of objects along the normal to the model surface.The smoothness of the model,i.e.,its order n,is optimized.An outlier elimination algorithm is applied.The developed method allows us to simultaneously identify significant details of the Galactic warping and estimate the offset z_(⊙) of the Sun relative to the average(in general,non-flat)surface of the Galactic disk and the vertical scale of the object system under consideration for an arbitrary area of the disk covered by data.The method is applied to data on classical Cepheids.Significant local extremes of the average disk surface model were found based on Cepheid data:the minimum in the first Galactic quadrant and the maximum in the second.A well-known warp(lowering of the disk surface)in the third quadrant has been confirmed.The optimal order of the model describing all these warping details was found to be n_(o)=4.The local(for a small neighborhood of the Sun,n_(o)=0)estimate of z_(⊙)=28.1±6.1|_(stat).±1.3|_(cal).pc is close to the non-local(taking into account warping,n_(o)=4)z_(⊙)=27.1±8.8|_(stat.-1.2)^(+1.3)|_(cal).pc(statistical and calibration uncertainties are indicated),which suggests that the proposed modeling method eliminates the influence of warping on the z_(⊙) estimate.However,the non-local estimate of the vertical standard deviation of Cepheids σ_(p)=132.0±3.7|_(stat.-5.9)^(+6.3)|_(cal).pc differs significantly from the local σ_(ρ)=76.5±4.4|_(stat.-3.4)^(+3.6)|_(cal).pc,which implies the need to introduce more complex models for the vertical distribution outside the Sun’s vicinity.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)No.11873055 and No.11933003sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)+4 种基金support from project PID2020-114414GB-100,financed by MCIN/AEI/10.13039/501100011033the Junta de Andaluciaía(Spain)grant FQM108support by the National Key R&D Program of China No.2017YFA0402600the National Natural Science Foundation of China(NSFC)grant Nos.11890692,12133008,and 12221003China Manned Space Project No.CMS-CSST2021-A04。
文摘We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).
基金supported by China Manned Space Program through its Space Application System,the National Natural Science Foundation of China(NSFC,grant Nos.11973022 and U1811464)the Natural Science Foundation of Guangdong Province(No.2020A1515010710)。
文摘Galaxy morphology classifications based on machine learning are a typical technique to handle enormous amounts of astronomical observation data,but the key challenge is how to provide enough training data for the machine learning models.Therefore this article proposes an image data augmentation method that combines few-shot learning and generative adversarial networks.The Galaxy10 DECaLs data set is selected for the experiments with consistency,variance,and augmentation effects being evaluated.Three popular networks,including AlexNet,VGG,and ResNet,are used as examples to study the effectiveness of different augmentation methods on galaxy morphology classifications.Experiment results show that the proposed method can generate galaxy images and can be used for expanding the classification model’s training set.According to comparative studies,the best enhancement effect on model performance is obtained by generating a data set that is 0.5–1 time larger than the original data set.Meanwhile,different augmentation strategies have considerably varied effects on different types of galaxies.FSL-GAN achieved the best classification performance on the ResNet network for In-between Round Smooth Galaxies and Unbarred Loose Spiral Galaxies,with F1 Scores of 89.54%and 63.18%,respectively.Experimental comparison reveals that various data augmentation techniques have varied effects on different categories of galaxy morphology and machine learning models.Finally,the best augmentation strategies for each galaxy category are suggested.
基金supported by the National Key R&D Program of China(2022YFA1602901)the National Natural Science Foundation of China(NSFC,grant No.12373001)supported by the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences。
文摘We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation reveals that the warped HⅠdisk of NGC 5055 is more extended than what was previously observed by WSRT,out to239(61.7 kpc).The total HⅠmass of NGC 5055 is determined to be~1.1×10^(10)M_Θ.We identified three HⅠclouds with HⅠmasses of the order of~10^(7)M_Θat the southeastern edge of the HⅠdisk,as well as a candidate high-velocity cloud with an HⅠmass of(1.2±0.5)×10^(6)M_Θto the north of NGC 5055.The HⅠcontent of UGCA337 is robustly detected for the first time by the FAST observations.It has a narrow HⅠlinewidth of W_(50)=17.4±3.8 km s^(-1)with a total HⅠmass of(3.5±0.3)×10^(6)M_Θ.Comparing the gas content and g-r color of UGCA 337 with typical low-mass dwarf galaxies,UGCA 337 appears relatively gas-poor despite its blue color.This suggests that UGCA 337 may have undergone gas stripping in the past.We also analyzed the possible origin of the diffuse HⅠclouds located at the outskirts of NGC 5055,and speculate that they might be the remnant features of a merger event in the past.
文摘This paper is an initial stage of consideration of the general problem of joint modeling of the vertical structure of a Galactic flat subsystem and the average surface of the disk of the Galaxy,taking into account the natural and measurement dispersions.We approximate the average surface of the Galactic disk in the region covered by the data with a general(polynomial)model and determine its parameters by minimizing the squared deviations of objects along the normal to the model surface.The smoothness of the model,i.e.,its order n,is optimized.An outlier elimination algorithm is applied.The developed method allows us to simultaneously identify significant details of the Galactic warping and estimate the offset z_(⊙) of the Sun relative to the average(in general,non-flat)surface of the Galactic disk and the vertical scale of the object system under consideration for an arbitrary area of the disk covered by data.The method is applied to data on classical Cepheids.Significant local extremes of the average disk surface model were found based on Cepheid data:the minimum in the first Galactic quadrant and the maximum in the second.A well-known warp(lowering of the disk surface)in the third quadrant has been confirmed.The optimal order of the model describing all these warping details was found to be n_(o)=4.The local(for a small neighborhood of the Sun,n_(o)=0)estimate of z_(⊙)=28.1±6.1|_(stat).±1.3|_(cal).pc is close to the non-local(taking into account warping,n_(o)=4)z_(⊙)=27.1±8.8|_(stat.-1.2)^(+1.3)|_(cal).pc(statistical and calibration uncertainties are indicated),which suggests that the proposed modeling method eliminates the influence of warping on the z_(⊙) estimate.However,the non-local estimate of the vertical standard deviation of Cepheids σ_(p)=132.0±3.7|_(stat.-5.9)^(+6.3)|_(cal).pc differs significantly from the local σ_(ρ)=76.5±4.4|_(stat.-3.4)^(+3.6)|_(cal).pc,which implies the need to introduce more complex models for the vertical distribution outside the Sun’s vicinity.