期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative Structure-biodegradability Relationship Study about the Aerobic Biodegradation of Some Aromatic Compounds 被引量:1
1
作者 荆国华 李小林 周作明 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2011年第3期368-375,共8页
10 quantum chemical descriptors of 21 aromatic compounds have been calculated by the semi-empirical quantum chemical method AM1. The Quantitative Structure-Biodegradability Relationships (QSBR) studies were performe... 10 quantum chemical descriptors of 21 aromatic compounds have been calculated by the semi-empirical quantum chemical method AM1. The Quantitative Structure-Biodegradability Relationships (QSBR) studies were performed by the multiple linear regression (MLR), principal component regression (PCR) and back propagation artificial neural network (BP-ANN), respectively. The root mean square error (RMSE) of the training and validation sets of the BP-ANN model are 0.1363 and 0.0244, the mean absolute percentage errors (MAPE) are 0.1638 and 0.0326, the squared correlation coefficients (R^2) are 0.9853 and 0.9996, respectively. The results show that the BP-ANN model achieved a better prediction result than those of MLR and PCR. In addition, some insights into the structural factors affecting the aerobic biodegradation mechanism were discussed in detail. 展开更多
关键词 aromatic compounds quantitative structure-biodegradability relationships multiple linear regression principal component regression artificial neural network
下载PDF
Ultrasonic-assisted Biodegradation of Endocrine DisruptingCompounds in Soil by Pseudomonas putida: the Importance of Rhamnolipid for Intermediate Product Degradation
2
作者 CHEN Ying ZHANG Chen LI Yu 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2017年第2期179-186,共8页
The present study aimed to completely remove estrogens, including oestrone(E1), oestradiol(E2), oes-triol(E3), 17a-ethinylestradiol(EE2) and bisphenol-A(BPA), from soil using Pseudomonas putida(P., putida)... The present study aimed to completely remove estrogens, including oestrone(E1), oestradiol(E2), oes-triol(E3), 17a-ethinylestradiol(EE2) and bisphenol-A(BPA), from soil using Pseudomonas putida(P., putida). A centralcomposite design was developed to determine the optimal conditions of three variables(ultrasonication time, quantityof P. putida, and concentration of added rhamnolipid) for the removal of the estrogens, and the biodegradation ratesof the estrogens were investigated under the optimum conditions. Moreover, a quantitative structure-biedegradationrelationship(QSBR) was used to analyze the effect of the estrogenic physicochemical properties on the enhancementof the biological degradation. The optimal conditions were an ultrasonication time of 3 min, a P. putida quantity of 8mL, and a rhamnolipid concentration of 100 mg/L. These conditions resulted in removal of 100%, 94.86%, 94.90%,96.56% and 94.56% of El, E2, EE2, BPA and E3, respectively after 7 d. The degradations were more rapid and com-plete than those reported in previous studies, indicating the suitability of the adaptation of P. putida to estrogen de-gradation under conditions of ultrasonic-assistance and adding rhamnolipid, improvement was particularly apparentfrom the complete degradation of E3. Based on a Pearson correlation analysis, the estrogen molecule polar surfacearea(PSA) and surface tension were significantly related to the biodegradation effect. An analysis of the QSBR modelwith the estrogen biodegradation rates as a dependent variable and the PSA and surface tension as independent va-riables indicated that larger PSA caused decreased estrogen biodegradation, while the biodegradation progress wasdominated by the surface tension of the estrogens. The interaction of PSA and surface tension had an antagonistic ef-fect on the biodegradation of estrogens. Therefore, rhamnolipid/ultrasonication can significantly improve the biode-gradation rates of oestrogens in soil, while simultaneously adjusting other environmental conditions would influenceand control the biodegradation processes of estrogens. 展开更多
关键词 Estrogen Biodegradafion RHAMNOLIPID Ultrasonic-assistance Quantitative structure-biodegradation rela-tionship(QSBR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部