The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and...The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and the physical properties of the catalysts and Cuspecies were characterized with N_2 adsorption and N_2O passivation method, respectively. For theCu-Zn binary system prepared at the precipitating condition of pH=8.0 and temperature=80℃, theinitial phase was a mixture of copper nitrate hydroxide Cu_2(NO_3)(OH)_3, georgeite and hydrozinciteZn_5(CO_3)_2(OH)_6. By increasing the duration of its aging time, the phase of Cu_2(NO_3)(OH)_2first transited to georgeite, and then interdiffused into Zn_5(CO_3)_2(OH)_6 and resulted in two newphases: rosasite (Cu,Zn)_2CO_3(OH)_2 and au-richalcite (Zn,Cu)_5(CO_3)_2(OH)_6. The former phasewas much easier to be formed than the latter one, while the latter phase was more responsible forthe activity of methanol synthesis than the former one. It is found that the composition andstructure of the precursors altered obviously after the colour transition point. The experimentalresults showed that methanol synthesis is a structure-sensitive catalytic reaction.展开更多
文摘The aging process of pure copper precursors and copper-zinc binary precursorswere studied by XRD, TG-DTG and TPR techniques. The catalytic activity and stability of CuO/ZnOwere tested using fixed-bed flow reactor, and the physical properties of the catalysts and Cuspecies were characterized with N_2 adsorption and N_2O passivation method, respectively. For theCu-Zn binary system prepared at the precipitating condition of pH=8.0 and temperature=80℃, theinitial phase was a mixture of copper nitrate hydroxide Cu_2(NO_3)(OH)_3, georgeite and hydrozinciteZn_5(CO_3)_2(OH)_6. By increasing the duration of its aging time, the phase of Cu_2(NO_3)(OH)_2first transited to georgeite, and then interdiffused into Zn_5(CO_3)_2(OH)_6 and resulted in two newphases: rosasite (Cu,Zn)_2CO_3(OH)_2 and au-richalcite (Zn,Cu)_5(CO_3)_2(OH)_6. The former phasewas much easier to be formed than the latter one, while the latter phase was more responsible forthe activity of methanol synthesis than the former one. It is found that the composition andstructure of the precursors altered obviously after the colour transition point. The experimentalresults showed that methanol synthesis is a structure-sensitive catalytic reaction.